Neurosurgery
-
The emerging insight into resting-state cortical networks has been important in our understanding of the fundamental architecture of brain organization. These networks, which were originally identified with functional magnetic resonance imaging, are also seen in the correlation topography of the infraslow rhythms of local field potentials. Because of the fundamental nature of these networks and their independence from task-related activations, we posit that, in addition to their neuroscientific relevance, these slow cortical potential networks could play an important role in clinical brain mapping. ⋯ Resting-state networks may be useful for tailoring stimulation mapping and could provide a means of identifying eloquent regions in patients while under anesthesia.