Neurosurgery
-
The learning and development of technical skills are paramount for neurosurgical trainees. External influences and a need for maximizing efficiency and proficiency have encouraged advancements in simulator-based learning models. ⋯ Didactic and technical quantitative scores with a simulator-based educational curriculum improved objectively measured resident performance. A minimally invasive spine simulation model and curriculum may serve a valuable function in the education of neurosurgical residents and outcomes for patients.
-
Carotid endarterectomy (CEA) might improve cognitive function. Fractional anisotropy (FA) values in the cerebral white matter derived from diffusion tensor magnetic resonance imaging (DTI) correlate with cognitive function in patients with various central nervous system diseases. ⋯ Postoperative increase in cerebral white matter FA on DTI is associated with cognitive improvement after uncomplicated CEA.
-
Simulation has been adopted as a powerful training tool in many areas of health care. However, it has not yet been systematically embraced in neurosurgery because of the absence of validated tools, assessment scales, and curricula. ⋯ Simulation has the potential to enhance resident education and to elevate proficiency levels. Our data suggest that a focused microsurgical module that incorporates a didactic component and a technical component can enhance resident knowledge and technical proficiency in microsurgical anastomosis.
-
Virtual reality (VR) simulation-based technologies play an important role in neurosurgical resident training. The Congress of Neurological Surgeons (CNS) Simulation Committee developed a simulation-based curriculum incorporating VR simulators to train residents in the management of common neurosurgical disorders. ⋯ VR ventriculostomy placement as part of the CNS simulation trauma module complements standard training techniques for residents in the management of neurosurgical trauma. Improvement in didactic and hands-on knowledge by course participants demonstrates the usefulness of the VR simulator as a training tool.
-
Mechanisms that lead to de novo formations of nonfamilial-type cavernomas are not well understood. One of the interesting hypotheses is the causative relationship between developmental venous anomaly (DVA) and cavernoma formation. We report a unique case in which serial imaging demonstrated the evolution of de novo formation of a cavernoma in association with a thrombosed DVA. A detailed review of the causal hypothesis between a DVA and cavernoma is also provided. ⋯ Compared with other published cases of de novo cavernoma formation in relation to a DVA, our case, for the first time, allows us to witness the temporal evolution from a thrombosed DVA to the birth of a cavernoma around it. This supports the hypothesis that the cavernoma can be an acquired disease that arises from a DVA.