Neurosurgery
-
The therapeutic challenge of glioblastoma (GBM) has catalyzed the development of clinical trials to evaluate novel interventions. With increased understanding of GBM biology and technological advances, the neurosurgeon's role in neuro-oncology has evolved. ⋯ Procedural interventions comprised ∼10% of all registered GBM trials. Local delivery of therapeutics, use of surgical imaging techniques and novel device applications, predominantly through phase I designs, represent the evolved role of the neurosurgeon in neuro-oncology. Improved reporting of trial designs, outcomes, and results are needed to better inform the field and increase efficiency.
-
The rarity of Isocitrate Dehydrogenase mutated (mIDH) glioblastomas relative to wild-type IDH glioblastomas, as well as their distinct tumor physiology, effectively render them "outliers". Specialized tools are needed to identify these outliers. ⋯ We employed an anomaly detection strategy in the detection of IDH mutation in glioblastoma using preoperative T1 postcontrast imaging. We show these methods outperform traditional two-class classification in the setting of dataset imbalances inherent to IDH mutation prevalence in glioblastoma. We validate our results using an external dataset and highlight new possible avenues for radiogenomic rare event prediction in glioblastoma and beyond.
-
Deep brain stimulation (DBS) has emerged as a promising therapy for neuropsychiatric illnesses, including depression and obsessive-compulsive disorder, but has shown inconsistent results in prior clinical trials. We propose a shift away from the empirical paradigm for developing new DBS applications, traditionally based on testing brain targets with conventional stimulation paradigms. ⋯ In this paradigm-shifting approach, we combine readouts obtained from neurophysiology, behavioral assessments, and self-report during broad exploration of stimulation parameters and behavioral tasks to inform the selection of ideal DBS parameters. Such an approach not only provides a foundational understanding of dysfunctional circuits underlying symptom domains in neuropsychiatric conditions but also aims to identify generalizable principles that can ultimately enable individualization and optimization of therapy without intracranial monitoring.
-
A limitation of diffusion tensor imaging (DTI)-based tractography is peritumoral edema that confounds traditional diffusion-based magnetic resonance metrics. ⋯ This method of edema correction can be applied to standard clinical DTI to improve visualization of motor and language tracts in patients with glioma-associated peritumoral edema.