Neurosurgery
-
Neuromonitoring in minimally invasive spine surgery (MISS) provides real-time feedback to surgeons and enhances surgical precision for improved patient safety. Since the 1970s, established techniques like somatosensory evoked potentials, motor evoked potentials, and electromyography have been integrated into spine surgeries, significantly reducing the risk of neurological complications. These neuromonitoring modalities have been crucial, particularly in complex procedures with limited direct visualization. ⋯ This review explores the historical development, current techniques, clinical outcomes, and future directions of neuromonitoring in MISS. It emphasizes the critical role of these technologies in enhancing surgical outcomes and patient care. As MISS continues to evolve, adopting next-generation neuromonitoring systems, including artificial intelligence and machine learning, will play a pivotal role in advancing the efficacy and safety of spine surgeries.
-
Minimally invasive surgery (MIS) has significantly revolutionized spine surgery by reducing morbidity, minimizing tissue damage, and improving postoperative outcomes compared with traditional open surgeries. Although MIS is well-documented for degenerative spine diseases, its full scope and limitations in spine trauma remains underexplored. Thus, this review aims to address this gap by examining relevant literature on the evolution, current practices, and future directions of MIS applications in spinal trauma care. ⋯ Based on a literature review of 85 studies, the following manuscript focuses on the indications, complications, current literature, clinical outcomes, future directions, and limitations of MIS in managing thoracolumbar and cervical spine injuries with particular emphasis on percutaneous pedicle screw fixation, lateral thoracic and lumbar corpectomies, anterior thoracoscopic/endoscopic approaches, and treatment algorithms. Although MIS for spinal trauma offers numerous advantages, continuous research and data collection are crucial to developing clear treatment algorithms and improving clinical outcomes. However, the future of MIS in spine trauma care remains promising, with advancements in technology and surgical techniques anticipated to enhance safety, efficacy, and patient satisfaction.
-
Single-position prone transpsoas (PTP) lateral interbody fusion has been proposed as an alternative to lateral lumbar interbody fusion performed in the lateral decubitus position. The advantages to this single-position technique include facilitating segmental lordosis, obviating the need for repositioning for posterior instrumentation, and providing access for posterior decompression. ⋯ This review provides a detailed technical description of the PTP technique at L4-L5. In addition, we provide technical pearls aimed at improving surgical ergonomics, workflow, and safety.
-
The application of minimally invasive spine surgery (MISS) in degenerative spine disease and deformity has seen rapid growth in the past 20 years. Building on this experience, such methods have been adopted into spine oncology in the past decade, particularly for metastatic disease. The impetus for this growth stems from the benefits of surgical decompression combined with radiation treatment in patients with metastatic disease in conjunction with the need for less morbid interventions in a patient population with limited life expectancy. ⋯ The implementation of navigation and robotic capabilities has transformed MISS by streamlining surgery and further reducing the surgical footprint while laser ablation, endoscopy, and robotic surgery hold the potential to minimize the surgical footprint even further. MISS for intradural tumors is commonly performed, while the role for other primary tumors has yet to be defined. In this article, we describe the evolution of and indications for MISS in spine oncology through a retrospective literature review.
-
The transforaminal lumbar interbody fusion remains one of the most common surgical techniques used for spinal arthrodesis. Spine surgery over the last three decades has increasingly emphasized approaches that reduce tissue trauma, iatrogenic injury, and perioperative morbidity. ⋯ In this paper, the authors review the techniques and considerations underlying visualization within both methods, as well as provide summary of a hybrid system incorporating the advantages of both. Minimally invasive transforaminal lumbar interbody fusion modalities must be selected in accordance with patient factors to achieve optimal outcomes.