Neurosurgery
-
There is a growing attention to determine the factors that predict quality of life (QoL) improvement after deep brain stimulation (DBS) for Parkinson's disease. Prior literature has largely focused on examining predictors one at a time, sometimes controlling for covariates. ⋯ Our model accurately predicted whether QoL would improve in patients undergoing subthalamic nucleus DBS 81% of the time. Our data may serve as the foundation to further refine a clinically relevant prognostic tool that would assist the decision-making process for clinicians and DBS multidisciplinary teams assessing patient candidacy for surgery.
-
Intraoperative stimulation of the posterior inferior frontal lobe (IFL) induces speech arrest, which is often interpreted as demonstration of essential language function. However, prior reports have described "negative motor areas" in the IFL, sites where stimulation halts ongoing limb motor activity. ⋯ Inferior frontal gyrus speech arrest sites do not function solely in speech production. These findings provide further evidence for the complexity of language organization, and suggest the need for refined mapping strategies that discern between language-specific sites and inhibitory motor areas.
-
Steroid administration is part of a standard treatment regimen in metastatic spinal cord compression, though the appropriate dose, duration, efficacy, and risks remain controversial. ⋯ Steroid use is associated with a significant increased risk of 30-d mortality in surgical metastatic spine tumor patients with disseminated disease. These findings warrant further investigation in controlled experimental environments.
-
Therapeutic brain stimulation has proven efficacious for treatment of nervous system diseases, exerting widespread influence via disease-specific neural networks. Activation or suppression of neural networks could theoretically be assessed by either clinical symptom modification (ie, tremor, rigidity, seizures) or development of specific biomarkers linked to treatment of symptomatic disease states. For example, biomarkers indicative of disease state could aid improved intraoperative localization of electrode position, optimize device efficacy or efficiency through dynamic control, and eventually serve to guide automatic adjustment of stimulation settings. ⋯ Critical questions include whether adaptive systems adjusted through biomarkers can optimize efficiency and eventually efficacy, serve as inputs for stimulation adjustment, and consequently broaden our fundamental understanding of abnormal neural networks in pathologic states. Neurosurgeons are at the forefront of translating and developing biomarkers embedded within improved brain stimulation systems. Thus, criteria for developing and validating biomarkers for clinical use are important for the adaptation of device approaches into clinical practice.