Developmental neuroscience
-
To investigate the effects of neonatal stroke on progenitor cells lining the lateral ventricles. ⋯ Neurogenesis originating from cells of the lateral ventricle, including SVZ type B cells, is significantly reduced following neonatal stroke. Furthermore, neonatal stroke disrupts gliogenesis in the striatum, decreasing overall numbers of new glia and shifting the population towards astrocytes.
-
Physical abuse associated with nonaccidental trauma (NAT) affects approximately 144,000 children per year in the USA and, frequently, these injuries affect the developing brain. Most infants with suspected NAT are initially evaluated by skull X-rays and computed tomography to determine whether fractures are present, the severity of the acute injury and the need for urgent neurosurgical intervention. Increasingly, magnetic resonance imaging (MRI) is conducted as it provides additional diagnostic and prognostic information about the extent and nature of the injury. ⋯ Diffusion tensor imaging is a form of DWI and allows better evaluation of white matter fiber tracts by taking advantage of the intrinsic directionality (anisotropy) of water diffusion in the human brain. It has been shown to be useful in identifying white matter abnormalities after DAI when conventional imaging appears normal. Although these imaging methods have been studied primarily in adults and children with accidental traumatic brain injury, it is clear that they have the potential to provide additional value in the imaging and clinical evaluation of children with NAT.
-
Vasopressors are commonly used to increase mean arterial blood pressure (MAP) and cerebral perfusion pressure (CPP) after traumatic brain injury (TBI), but there are few data comparing vasopressor effectiveness after pediatric TBI. ⋯ Vasopressor use varied by age. While there was no statistically significant difference in MAP or CPP between vasopressor groups, norepinephrine was associated with a clinically relevant higher CPP and lower intracranial pressure at 3 h after start of vasopressor therapy compared to the other vasopressors examined.
-
Traumatic brain injury (TBI) and hypoxic ischemic encephalopathy (HIE) are leading causes of morbidity and mortality in children. Several studies over the past several years have evaluated the use of serum biomarkers to predict outcome after pediatric brain injury. These studies have all used simple point estimates such as initial and peak biomarker concentrations to predict outcome. ⋯ Thus, when the models predicted a poor outcome, there was a very high probability of a poor outcome. In contrast, 17% of subjects with a poor outcome were predicted to have a good outcome by all 3 biomarker trajectories. These data suggest that trajectory analysis of biomarker data may provide a useful approach for predicting outcome after pediatric brain injury.
-
Hypotension and low cerebral perfusion pressure are known to be associated with unfavorable outcome in children and adults with traumatic brain injury. Using the database from a previously published, randomized controlled trial of 24 h of hypothermia therapy in children with severe traumatic brain injury, we compared the number of patients with hypotension or low cerebral perfusion pressure between the hypothermia therapy and normothermia groups. ⋯ These physiologic insults were associated with unfavorable outcome in both intervention groups. Hypotension and low cerebral perfusion pressure should be anticipated and prevented in future trials of hypothermia therapy in patients with traumatic brain injury.