Neurotoxicology
-
Medical use of ionizing radiation (IR) has great benefits for treatment and diagnostic imaging, but procedures as computerized tomography (CT) may deliver a significant radiation dose to the patient. Recently, awareness has been raised about possible non-cancer consequences from low dose exposure to IR during critical phases of perinatal and/or neonatal brain development. In the present study neonatal NMRI mice were whole body irradiated with a single dose of gamma radiation (0; 350 and 500 mGy) on postnatal day 10 (PND 10). ⋯ Six-month-old male mice showed a significantly increased level of total tau in cerebral cortex after irradiation to 500 mGy compared to controls. This demonstrates that a single moderate dose of IR, given during a defined critical period of brain development, is sufficient to cause persistently reduced cognitive function. Moreover, an elevation of tau protein was observed in male mice displaying reduced cognitive function.
-
Although MPP(+) (1-methyl-4-phenylpyridinium) has been widely used to damage dopaminergic neurons of the Substantia Nigra pars compacta (SNc) and produce animal and cellular models of Parkinson's disease, the action of this toxin on ion channels and electrophysiological properties of these neurons remains controversial. Previous work has attributed the early effects of MPP(+) on the membrane potential and firing frequency of SNc neurons either to block of hyperpolarisation-activated (Ih) current, or to activation of ATP-sensitive K(+) (KATP) channels. Using a combination of electrophysiological and pharmacological techniques, we investigated the acute effects of MPP(+) (20 μM) on SNc neurons in rat midbrain slices. ⋯ After longer exposure (>10-20 min), MPP(+) produced a late phase of inhibition which mainly involved activation of KATP channels, and required uptake of the toxin via dopamine transporter. Although Ih current mediated by hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels was reduced by MPP(+), neither inhibition of firing nor membrane potential hyperpolarisation was significantly attenuated by blocking HCN channels with ZD7288. Our results indicate that the initial cellular events that lead to activation of cell death pathways by MPP(+) are complex and include KATP, and dopamine-dependent components, and show that the inhibitory effect of the toxin is independent of Ih block.
-
Acute pesticide poisoning (APP), particularly with neurotoxic agents, is often under-reported in developing countries. This study aimed to estimate the burden of APP in Tanzania due to neurotoxic and other pesticides in order to propose a surveillance system. ⋯ The two to threefold increase in rates with prospective data collection suggests significant under-reporting of APP by neurotoxic and other pesticides. Routine reporting is likely to under-estimate the burden from pesticides, particularly for women in occupational settings. The burden of APP and the specific pesticides causing serious problems in Tanzania would continue to be missed without improved surveillance systems.
-
Cognitive impairment (CI) associated with chronic kidney disease (CKD) has received attention as an important problem in recent years. Causes of CI with CKD are multifactorial, and include cerebrovascular disease, renal anemia, secondary hyperparathyroidism, dialysis disequilibrium, and uremic toxins (UTs). Among these causes, little is known about the role of UTs. ⋯ Notably, most of the data were not obtained under uremic conditions; therefore, the impact and mechanism of each UT on cognition and central nervous system in uremic state remains unknown. At present, impacts and mechanisms of UT effects on cognition are poorly understood. Clarifying the mechanisms and establishing novel therapeutic strategies for cerebro-renal interaction dysfunction is expected to be subject of future research.
-
A prior study demonstrated increased overall response rates on a fixed interval (FI) schedule of reward in female offspring that had been subjected to maternal lead (Pb) exposure, prenatal stress (PS) and offspring stress challenge relative to control, prenatal stress alone, lead alone and lead+prenatal stress alone (Virgolini et al., 2008). Response rates on FI schedules have been shown to directly relate to measures of self-control (impulsivity) in children and in infants (Darcheville et al., 1992, 1993). The current study sought to determine whether enhanced effects of Pb±PS would therefore be seen in a more direct measure of impulsive choice behavior, i.e., a delay discounting paradigm. ⋯ Consistent with these behavioral changes, Pb±PS treated males also showed reductions in brain serotonin function in all mesocorticolimbic regions, broad monoamine changes in nucleus accumbens, and reductions in both BDNF and NMDAR 2A levels and increases in SERT in frontal cortex, i.e., in regions and neurotransmitter systems known to mediate learning/behavioral flexibility, and which were of greater impact in males. The current findings do not fully support a generality of the enhancement of Pb effects by PS, as previously seen with FI performance in females (Virgolini et al., 2008), and suggest a dissociation of the behaviors controlled by FI and delay discounting paradigms, at least in response to Pb±PS in rats. Collectively, however, the findings remain consistent with sex-dependent differences in the impacts of both Pb and PS and with the need to understand both the role of contingencies of reinforcement and underlying neurobiological effects in these sex differences.