Behavioural brain research
-
Prior research has revealed that treatments that elevate the level of the pro-inflammatory cytokine IL-1beta in the brain, if given after training, impair contextual but not auditory-cue fear conditioning. The present experiments add to these finding by showing that, (a) IL-1beta exerts its effect on contextual fear conditioning by impairing consolidation processes that support the storage of the memory representation of the context; (b) the dorsal hippocampus is a critical site for the effect of IL-1beta; (c) the effect of IL-1beta cannot be attributed to its effect on glucocorticoid levels; and (d) IL-1beta injected into dorsal hippocampus either, immediately, 3, or 24 h, but not 48 h, after training produces this impairment. At this time the mechanisms responsible for this impairment are not understood, but may involve late-phase protein synthesis processes associated with LTP, because later consolidation processes are being disrupted.
-
The present study was conducted to establish a simple method for measuring muscular rigidity in rats, which could be used for screening and is able to discriminate between rigidity and akinesia/catalepsy. Therefore, we treated rats with morphine (30 mg/kg i.p.), since large doses of morphine lead to muscular rigidity and akinesia. We measured muscular rigidity with a new method by determining the resistance of the hindlimb to passive flexion in the 'balance test' and also checked haloperidol (3 mg/kg i.p.) treated rats for muscular rigidity. ⋯ The results showed that morphine, but not haloperidol led to muscular rigidity, whereas both drugs led to positive scores in the catalepsy test. The dopaminergic drugs partly antagonized the morphine-induced muscular rigidity in the doses applied, but not the catalepsy. Apparently, rigidity, akinesia/catalepsy produced by morphine can be discriminated from that produced by haloperidol in simple and quick tests.
-
Regulation of gene transcription via the cyclic adenosine 3',5'-monophosphate (cAMP)-mediated second messenger pathway has been implicated in learning and memory. Although the cAMP response element-binding protein (CREB) is an important transcription factor involved in long-term memory, it remains to be determined whether the CREB-dependent events are attributed to spatial learning and memory in a radial arm maze. ⋯ On the other hand, neither the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) nor the mRNA level of brain-derived neurotrophic factor was significantly affected. These results suggest that activation of the PKA/CREB signaling pathway in the hippocampus plays an important role in spatial memory formation.
-
This study tests the hypothesis that the anterior thalamic nuclei play a significant role in spatial learning and memory. Adult, male Sprague-Dawley rats with bilateral ibotenic acid lesions of the anterior thalamus were tested for 5 days in a repeated acquisition water maze task. Compared with Controls, rats with nearly complete lesions of both anterodorsal (AD) and anteroventral (AV) thalamic nuclei (AD/AV) were only mildly impaired in their spatial learning and memory. ⋯ Approximately one-half of the rats were tested for a second week to determine if the impaired groups would benefit from further training. AD/AV/AM rats showed little improvement, but the other groups all improved significantly in all aspects of the task except the probe trial. Together, these data indicate that the anterior thalamic nuclei contribute to spatial learning and memory, but neither AV nor AD independently plays a dominant role.
-
Although final brain size and the number of available neurons and axons appear to be established early in infancy, plasticity of the brain continues during adolescence through an integrated process of overproduction and elimination of synapses and receptors. In addition, hormonal levels change dramatically during this period, as a result of the onset of puberty. This age-specific condition has been suggested to serve as a permissive factor for the emergence of a number of early-onset neuropsychiatric disorders, including schizophrenia, attention-deficit hyperactivity disorder (ADHD), and perhaps substance abuse. ⋯ These results indicate a strong role for gender and social variables in the response of periadolescent subjects to the various aspects of stress. As for AMPH effects, in the absence of significant changes in adult subjects, the drug produced a marked CORT release in periadolescent mice. A better understanding of neuroendocrine-related AMPH effects as a function of social and environmental risk factors during adolescence, might deepen our knowledge on the neurobiological bases of genetically determined neuropsichiatric disorders and possibly improve the therapeutical efficacy of psychostimulant drugs.