Neurochemistry international
-
X-linked mental retardation (XLMR) is a common cause of moderate to severe intellectual disability in males. XLMR protein related to neurite extension (Xpn, also known as KIAA2022) has been implicated as a gene responsible for XLMR in humans. Although Xpn is highly expressed in the developing brain and is involved in neurite outgrowth in PC12 cells and neurons, little is known about the functional role of Xpn. ⋯ Furthermore, overexpressed Xpn protein was strongly expressed in the nuclei of PC12 and 293T cells. Finally, depletion of Xpn perturbed cellular migration by enhancing N-cadherin and β1-integrin expression in a PC12 cell wound healing assay. We conclude that Xpn regulates cell-cell and cell-matrix adhesion and cellular migration by regulating the expression of adhesion molecules.
-
Preliminary study in our laboratory showed that etazolate produced antidepressant- and anxiolytic-like effects in rodent models, however, the ability of etazolate to produce antidepressant- and anxiolytic-like effects and underlying mechanism(s) in chronic unpredictable mild stress (CUMS) model have not been adequately addressed. This study was aimed to investigate the beneficial effects of etazolate on CUMS-induced behavioral deficits (depression- and anxiety-like behaviors). In addition, the possible underlying mechanism(s) of etazolate in CUMS model was also investigated by measuring serum corticosterone (CORT) and brain-derived neurotrophic factor (BDNF) levels. ⋯ In this study no significant changes were observed in locomotor activity in actophotometer test. Moreover, we did not find any effect of etazolate and fluoxetine on CORT and BDNF levels in normal control mice. In conclusion, the results of the present study suggested compelling evidences that etazolate has more marked effect on depression-like behavior in mice, which is atleast in part may be related to their modulating effects on the HPA axis and BDNF level.
-
Chronic intractable pain caused by postherpetic neuralgia (PHN) can be alleviated by intrathecal (i.t.) steroid therapy. We investigated the possibility that interleukin-6 (IL-6) release in an in vitro system could be a potential marker for evaluating the effectiveness of i.t. steroid therapy in PHN patients. We studied 32 patients who received a course of i.t. injection of water-soluble dexamethasone. ⋯ In particular, therapy effective patients had less IL-6 release even before treatment as compared to therapy ineffective patients. In the therapy effective group, in vitro steroid treatment suppressed the CSF's IL-6 releasing effect almost completely, whereas in the therapy ineffective group, the IL-6 release was significantly reduced but remained detectable. These in vitro tests may provide an objective evaluation on the efficacy of i.t. steroid therapy administered to PHN patients.
-
Traumatic brain injury (TBI) is a devastating disease that commonly causes persistent mental disturbances and cognitive deficits. Although studies have indicated that overproduction of free radicals, especially superoxide (O2(-)) derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a common underlying mechanism of pathophysiology of TBI, little information is available regarding the role of apocynin, an NADPH oxidase inhibitor, in neurological consequences of TBI. Therefore, the present study evaluated the therapeutic potential of apocynin for treatment of inflammatory and oxidative damage, in addition to determining its action on neuromotor and memory impairments caused by moderate fluid percussion injury in mice (mLFPI). ⋯ Moreover, apocynin treatment reduced oxidative damage (protein carbonyl, lipoperoxidation) and was effective against mLFPI-induced Na(+), K(+)-ATPase activity inhibition. The present results were accompanied by effective reduction in lesion volume when analyzed 7days after neuronal injury. These data suggest that superoxide (O2(-)) derived from NADPH oxidase can contribute significantly to cognitive impairment, and that the post injury treatment with specific NADPH oxidase inhibitors, such as apocynin, may provide a new therapeutic approach to the control of neurological disabilities induced by TBI.
-
Schwann cells (SCs) are the myelin forming cells in the peripheral nervous system, they play a key role in the pathology of various polyneuropathies and provide trophic support to axons via expression of various neurotrophic factors, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Ethanol (EtOH) adversely affected both SCs proliferation and myelin formation in culture. Resveratrol (Res) has been shown to regulate many cellular processes and to display multiple protective and therapeutic effects. ⋯ However, the EtOH-induced increase of NGF in the SCs is inhibited by Res. The data from the present study indicate that Res protects SCs from EtOH-induced cell death and regulates the expression of neurotrophicfactors. Res and its derivative may be effective for the treatment of neuropathic diseases induced by EtOH.