Neurochemistry international
-
Emerging evidence indicates that chronic neuroinflammation plays a pivotal role in neuropathic pain. We explored whether activation of the nicotinic acetylcholine receptor (nAChRs) pathway on peripheral immune cells improves neuropathic pain. Mice were subjected to partial sciatic nerve ligation (PSL). ⋯ PSL-induced up-regulation of inflammatory cytokines and chemokines was suppressed by perineural administration of nicotine. Taken together, the expression of α4β2 and α7 subtypes of nAChRs may be increased on circulating macrophages and neutrophils in injured peripheral nerves. Activation of nAChRs on immune cells may relieve neuropathic pain accompanied by the suppression of neuroinflammation.
-
Abnormal protein aggregates have been suggested as a common pathogenesis of many neurodegenerative diseases. Two well-known protein degradation pathways are responsible for protein homeostasis by balancing protein biosynthesis and degradative processes: the ubiquitin-proteasome system (UPS) and autophagy-lysosomal system. UPS serves as the primary route for degradation of short-lived proteins, but large-size protein aggregates cannot be degraded by UPS. ⋯ Overexpression of SIRT2 inhibits lysosome-mediated autophagic turnover by interfering with aggresome formation and also makes cells more vulnerable to accumulated protein-mediated cytotoxicity by MG132 and amyloid beta. Moreover, MG132-induced accumulation of ubiquitinated proteins and p62 as well as cytotoxicity are attenuated in siRNA-mediated SIRT2-silencing cells. Taken together, these results suggest that regulation of SIRT2 could be a good therapeutic target for a range of neurodegenerative diseases by regulating autophagic flux.
-
Allicin, the active substance of garlic, exerts a broad spectrum of pharmacological activities and is considered to have potential therapeutic applications. The present study was designed to investigate the beneficial effects of allicin against spinal cord ischemia-reperfusion (I/R) injury and its associated mechanisms. Male New Zealand white rabbits were pretreated with allicin (1, 10 and 50 mg/kg) for two weeks, and exposed to infrarenal aortic occlusion-induced spinal cord I/R injury. ⋯ Furthermore, allicin also significantly suppressed the accumulations of protein and lipid peroxidation products, and increased the activities of endogenous antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione S-transferase (GST). In addition, allicin treatment preserved the function of mitochondria respiratory chain complexes and inhibited the production of ROS and the release of mitochondrial cytochrome c in the spinal cord of this model. Collectively, these findings demonstrated that allicin exerts neuroprotection against spinal cord I/R injury in rabbits, which may be associated with the improvement of mitochondrial function.
-
Ethanol-induced damage in the developing brain may result in cognitive impairment including deficits on neuropsychological tests of learning, memory and executive function, yet the underlying mechanisms remain elusive. In the present study we investigated the protective effect of tocotrienol against cognitive deficit, neuroinflammation and neuronal apoptosis in rat pups postnatally exposed to ethanol. Pups were administered ethanol (5g/kg, 12% v/v) by intragastric intubation on postnatal days 7, 8 and 9. ⋯ Impaired cognition was associated with significantly enhanced acetylcholinesterase activity, increased neuroinflammation (oxidative-nitrosative stress, TNF-α, IL-1β and TGF-β1) and neuronal apoptosis (NF-κβ and Caspase-3) in different brain regions of ethanol-exposed pups. Co-administration with tocotrienol significantly ameliorated all the behavioral, biochemical and molecular alterations in the different brain regions of ethanol exposed pups. The current study thus demonstrates the possible involvement of NF-κβ mediated apoptotic signaling in cognitive deficits associated with postnatal ethanol exposure in rats and points to the potential of tocotrienol in the prevention of cognitive deficits in children with fetal alcohol spectrum disorders (FASDs).
-
Axonal transport of enzymatically active botulinum toxin A (BTX-A) from periphery to the CNS has been described in facial and trigeminal nerve, leading to cleavage of synaptosomal-associated protein 25 (SNAP-25) in central nuclei. Aim of present study was to examine the existence of axonal transport of peripherally applied BTX-A to spinal cord via sciatic nerve. We employed BTX-A-cleaved SNAP-25 immunohistochemistry of lumbar spinal cord after intramuscular and subcutaneous hind limb injections, and intraneural BTX-A sciatic nerve injections. ⋯ Cleaved SNAP-25 in ventral horn, using choline-acetyltransferase (ChAT) double labeling, was localized within cholinergic neurons. These results extend the recent findings on BTX-A retrograde axonal transport in facial and trigeminal nerve. Appearance of truncated SNAP-25 in spinal cord following low-dose peripheral BTX-A suggest that the axonal transport of BTX-A occurs commonly following peripheral application.