Biomaterials
-
Epidural fibrosis resulted from epidural fat destruction following laminectomy operation is regarded as a main cause of failed back surgery syndrome, which represents one of the most common complications in spine surgery. Up to now, the effectiveness of currently available treatments to prevent such a syndrome is quite limited. In the present study, we aimed to restore epidural fat using adipose tissue engineered from adipose derived stem cells (ASCs) in a rabbit dorsal laminectomy model. ⋯ As to the defect treated with PLGA alone or left untreated, either fine or dense scar tissue adhering to the dura mater was observed. Moreover, we could track the implanted ASCs labeled by magnetic nanoparticles within epidural area for as long as four weeks by MRI detection. Thus, adipose tissue engineered from ASCs exhibited great potential in restoration of epidural fat to prevent formation of epidural fibrosis.
-
The high mechanical mismatch between stiffness of silicon and metal microelectrodes and soft cortical tissue, induces strain at the neural interface which likely contributes to failure of the neural interface. However, little is known about the molecular outcomes of electrode induced low-magnitude strain (1-5%) on primary astrocytes, microglia and neurons. In this study we simulated brain micromotion at the electrode-brain interface by subjecting astrocytes, microglia and primary cortical neurons to low-magnitude cyclical strain using a biaxial stretch device, and investigated the molecular outcomes of induced strain in vitro. ⋯ Significant upregulation of members of the caspase cysteine proteinase family and other pro-apoptotic genes was also observed in the presence of IL-36Ra than in the absence of IL-36Ra. Adult rats when implanted with microwire electrodes showed upregulation of IL-36Ra (≈ 20 fold) and IL-1Ra (≈ 1500 fold) 3 days post-implantation (3 DPI), corroborating in vitro results, although these transcripts were drastically down regulated by ≈ 20 fold and ≈ 1488 fold relative to expression levels 3 DPI, at the end of 12 weeks post-implantation (12 WPI). These results demonstrate that IL receptor antagonists may be negatively contributing to neuronal health at acute time-points post-electrode implantation.
-
A suitable culture condition using advanced biomaterials has the potential to improve stem cell differentiation into selective lineages. In this study, we evaluated the effects of recombinant extracellular matrix (ECM) components on the mouse embryonic stem (mES) and induced pluripotent stem (miPS) cells' self-renewal and differentiation into neural progenitors, comparing conventional culture substrata. The recombinant ECMs were established by immobilizing two chimera proteins of cadherin molecules, E-cadherin-Fc and N-cadherin-Fc, either alone or in combination. ⋯ Using defined monolayer differentiation conditions on E-cadherin and N-cadherin (E-/N-cad-Fc) hybrid substratum, we routinely obtained highly homogeneous population of primitive ectoderm and neural progenitor cells. Moreover, the differentiated cells with higher expression of βIII-tubulin, Pax6, and tyrosine hydroxylase (TH) in absence of GFAP (a glial cell marker) expression suggesting the presence of a lineage restricted to neural cells. Our improved culture method should provide a homogeneous microenvironment for differentiation and obviate the need for protocols based on stromal feeders or embryoid bodies.
-
With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for a small-diameter (<6 mm inner diameter) vascular graft that can provide long-term patency. Tissue engineering provides a very promising solution to this need. ⋯ This review summarizes the exciting work that has been reported on the application of adult stem cells to tissue engineered vascular grafts. Work in this area to date has employed bone marrow mononuclear progenitor cells, mesenchymal stem cells from various sources, and endothelial precursor cells.
-
Transplanted or endogenous neural stem cells often lack appropriate matrix in cavitary lesions in the central nervous system. In this study, gelatin-hydroxyphenylpropionic acid (Gtn-HPA), which could be enzymatically crosslinked with independent tuning of crosslinking degree and gelation rate, was explored as an injectable hydrogel for adult neural stem cells (aNSCs). The storage modulus of Gtn-HPA could be tuned (449-1717 Pa) to approximate adult brain tissue. ⋯ In mixed differentiation conditions, Gtn-HPA increased the proportion of aNSCs expressing neuronal marker β-tubulin III to a greater extent than that for astrocytic marker glial fibrillary acidic protein, indicating an enhancement in differentiation towards neuronal lineage. Between neuronal and astrocytic differentiation conditions, Gtn-HPA also selected for higher survival in the former. Overall, Gtn-HPA hydrogels are promising injectable matrices for supporting and influencing aNSCs in ways that may be beneficial for brain tissue regeneration after injuries.