The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Comparative Study
Effect of domain interaction on apolipoprotein E levels in mouse brain.
Apolipoprotein (apo) E4 is a risk factor for heart disease, Alzheimer's disease, and other forms of neurodegeneration, but the underlying mechanisms are unknown. Domain interaction, a structural property that distinguishes apoE4 from apoE2 and apoE3, results in more rapid turnover and lower plasma levels of apoE4. To determine whether domain interaction affects brain apoE levels, we analyzed brain homogenates from human apoE3 and apoE4 knock-in mice, wild-type mice, and Arg-61 apoE mice, in which domain interaction was introduced by gene targeting. ⋯ These results demonstrate that domain interaction is responsible for the lower levels of both human apoE4 and mouse Arg-61 apoE in mouse brain. Cells may recognize apoE4 and Arg-61 apoE as misfolded proteins and target them for degradation or accumulation. Thus, degradation/accumulation or lower levels of apoE4 may contribute to the association of apoE4 with Alzheimer's disease.
-
Comparative Study
Metabotropic glutamate receptor 8-expressing nerve terminals target subsets of GABAergic neurons in the hippocampus.
Presynaptic metabotropic glutamate receptors (mGluRs) show a highly selective expression and subcellular location in nerve terminals modulating neurotransmitter release. We have demonstrated that alternatively spliced variants of mGluR8, mGluR8a and mGluR8b, have an overlapping distribution in the hippocampus, and besides perforant path terminals, they are expressed in the presynaptic active zone of boutons making synapses selectively with several types of GABAergic interneurons, primarily in the stratum oriens. Boutons labeled for mGluR8 formed either type I or type II synapses, and the latter were GABAergic. ⋯ In vivo recording and labeling of an mGluR8-decorated and strongly M2-positive interneuron revealed a trilaminar cell with complex spike bursts during theta oscillations and strong discharge during sharp wave/ripple events. The trilaminar cell had a large projection from the CA1 area to the subiculum and a preferential innervation of interneurons in the CA1 area in addition to pyramidal cell somata and dendrites. The postsynaptic interneuron type-specific expression of the high-efficacy presynaptic mGluR8 in both putative glutamatergic and in identified GABAergic terminals predicts a role in adjusting the activity of interneurons depending on the level of network activity.
-
Comparative Study
Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer's disease.
Epidemiological studies demonstrate that chronic use of nonsteroidal anti-inflammatory drugs (NSAIDs) in normal aging populations reduces the risk of developing Alzheimer's disease (AD). NSAIDs inhibit the enzymatic activity of cyclooxygenase-1 (COX-1) and inducible COX-2, which catalyze the first committed step in the synthesis of prostaglandins. These studies implicate COX-mediated inflammation as an early and potentially reversible preclinical event; however, the mechanism by which COX activity promotes development of AD has not been determined. ⋯ Increases in BACE1 processing have been demonstrated in models of aging and AD and after oxidative stress. Our results indicate that PGE2 signaling via the EP2 receptor promotes age-dependent oxidative damage and increased Abeta peptide burden in this model of AD, possibly via effects on BACE1 activity. Our findings identify EP2 receptor signaling as a novel proinflammatory and proamyloidogenic pathway in this model of AD, and suggest a rationale for development of therapeutics targeting the EP2 receptor in neuroinflammatory diseases such as AD.