The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Comparative Study
Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function.
Chronic pain is associated with reduced brain gray matter and impaired cognitive ability. In this longitudinal study, we assessed whether neuroanatomical and functional abnormalities were reversible and dependent on treatment outcomes. We acquired MRI scans from chronic low back pain (CLBP) patients before (n = 18) and 6 months after (spine surgery or facet joint injections; n = 14) treatment. ⋯ Additionally, increased thickness in primary motor cortex was associated specifically with reduced physical disability, and right anterior insula was associated specifically with reduced pain. Left DLPFC activity during an attention-demanding cognitive task was abnormal before treatment, but normalized following treatment. These data indicate that functional and structural brain abnormalities-specifically in the left DLPFC-are reversible, suggesting that treating chronic pain can restore normal brain function in humans.
-
Output properties of neurons are greatly shaped by voltage-gated ion channels, whose biophysical properties and localization within axodendritic compartments serve to significantly transform the original input. The hyperpolarization-activated current, I(h), is mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and plays a fundamental role in influencing neuronal excitability by regulating both membrane potential and input resistance. In neurons such as cortical and hippocampal pyramidal neurons, the subcellular localization of HCN channels plays a critical functional role, yet mechanisms controlling HCN channel trafficking are not fully understood. ⋯ Mice lacking TRIP8b demonstrated motor learning deficits and enhanced resistance to multiple tasks of behavioral despair with high predictive validity for antidepressant efficacy. We observed similar resistance to behavioral despair in distinct mutant mice lacking HCN1 or HCN2. These data demonstrate that interaction with the auxiliary subunit TRIP8b is a major mechanism underlying proper expression of HCN channels and I(h) in vivo, and suggest that targeting I(h) may provide a novel approach to treatment of depression.
-
It has been hypothesized that the generalization patterns that accompany learning carry the signatures of the neural systems that are engaged in that learning. Reach adaptation in force fields has generalization patterns that suggest primary engagement of a neural system that encodes movements in the intrinsic coordinates of joints and muscles, and lesser engagement of a neural system that encodes movements in the extrinsic coordinates of the task. ⋯ However, when tDCS was applied to the posterior parietal cortex, it had no effects on learning or generalization in the force field task. The results suggest that during force field adaptation, the component of learning that produces generalization in intrinsic coordinates depends on the plasticity in the sensorimotor cortex.
-
Liver X receptors (LXRs) regulate immune cell function and cholesterol metabolism, both factors that are critically involved in Alzheimer's disease (AD). To investigate the therapeutic potential of long-term LXR activation in amyloid-β (Aβ) peptide deposition in an AD model, 13-month-old, amyloid plaque-bearing APP23 mice were treated with the LXR agonist TO901317. Postmortem analysis demonstrated that TO901317 efficiently crossed the blood-brain barrier. ⋯ In APP23 mice, long-term treatment with TO901317 strongly increased the association of microglia and Aβ plaques. Short-term treatment of APP/PS1 mice with TO901317 also increased this association, which was dependent on the presence of LXRα and was accompanied by increased ApoE lipidation. Together, these data suggest that astrocytic LXRα activation and subsequent release of ApoE by astrocytes is critical for the ability of microglia to remove fibrillar Aβ in response to treatment with TO901317.
-
Sleep deprivation (SD) can have a negative impact on cognitive function, but the mechanism(s) by which SD modulates memory remains unclear. We have previously shown that astrocyte-derived adenosine is a candidate molecule involved in the cognitive deficits following a brief period of SD (Halassa et al., 2009). In this study, we examined whether genetic disruption of soluble N-ethylmaleimide-sensitive factor attached protein (SNARE)-dependent exocytosis in astrocytes (dnSNARE mice) or pharmacological blockade of A1 receptor signaling using an adenosine A1 receptor (A1R) antagonist, 8-cyclopentyl-1,3-dimethylxanthine (CPT), could prevent the negative effects of 6 h of SD on hippocampal late-phase long-term potentiation (L-LTP) and hippocampus-dependent spatial object recognition memory. ⋯ Similarly, this deficit in L-LTP resulting from SD was prevented by a chronic infusion of CPT. Consistent with these results, we found that hippocampus-dependent memory deficits produced by SD were rescued in dnSNARE mice and CPT-treated mice. These data provide the first evidence that astrocytic ATP and adenosine A1R activity contribute to the effects of SD on hippocampal synaptic plasticity and hippocampus-dependent memory, and suggest a new therapeutic target to reverse the hippocampus-related cognitive deficits induced by sleep loss.