The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Dorsal rhizotomy results in primary deafferentation of the dorsal horn with concomitant sprouting of spared intraspinal monoaminergic axons. Because descending monoaminergic systems are thought to mitigate nociceptive transmission from the periphery and because dorsal rhizotomy can result in neuropathic pain, we sought to determine whether the rhizotomy-induced sprouting response could be further augmented. Because myelin-derived molecules mask endogenous plasticity of CNS axons and because myelin-inhibitory signaling occurs through the Rho-GTPase pathway, we inhibited Rho-pathway signaling after cervical dorsal rhizotomy in rats. ⋯ The most notable behavioral outcome was the development of cold hyperalgesia in the affected forepaw after rhizotomies of the C7 and C8 dorsal roots. Application of Y-27632 both attenuated cold hyperalgesia and induced monoaminergic plasticity after C7/8 rhizotomy. Thus, inhibition of Rho-pathway signaling both promoted the sprouting of intact supraspinal monoaminergic fibers and alleviated pain after dorsal rhizotomy.
-
Parkinson's disease (PD) is a movement disorder characterized by the selective degeneration of nigrostriatal dopaminergic neurons. Both familial and sporadic cases present tremor, rigidity, slowness of movement, and postural instability. Although major insights into the genes responsible for some rare hereditary cases have arisen, the etiology of sporadic cases remains unknown. ⋯ The addition of l-dopa (3,4-dihydroxy-L-phenylalanine) into the feeding medium rescued the behavioral deficits but not neuronal death, as is the case in human PD patients. In contrast, the antioxidant melatonin (N-acetyl-5-methoxytryptamine) alleviated both symptomatic impairment and neuronal loss, supporting the idea that this agent may be beneficial in the treatment of PD. Therefore, chronic exposure to pesticides recapitulates key aspects of PD in Drosophila and provides a new in vivo model for studying the mechanisms of dopaminergic neurodegeneration.
-
The cholinergic system within the nucleus pontis oralis (NPO) of the pontine tegmentum is critically involved in the generation of active (rapid eye movement) sleep. Previously, we demonstrated that a GABAergic system in the NPO also plays an important role in the control of the behavioral states of wakefulness as well as active sleep. The present study examined interactions between these two neuronal systems vis-a-vis the occurrence of these behavioral states. ⋯ We conclude that the excitatory cholinergic control of NPO neurons that are involved in the generation of active sleep is gated by a pontine GABAergic system that exerts its effects postsynaptically by inhibiting NPO neurons, resulting in the suppression of active sleep and the generation of wakefulness. In the absence of the activation of this GABAergic gating mechanism, active sleep occurs. These results reveal that specific interactions between cholinergic and GABAergic processes in the NPO play a critical role in the generation of active sleep and wakefulness.
-
Comparative Study
Chronic back pain is associated with decreased prefrontal and thalamic gray matter density.
The role of the brain in chronic pain conditions remains speculative. We compared brain morphology of 26 chronic back pain (CBP) patients to matched control subjects, using magnetic resonance imaging brain scan data and automated analysis techniques. CBP patients were divided into neuropathic, exhibiting pain because of sciatic nerve damage, and non-neuropathic groups. ⋯ Regional gray matter density in 17 CBP patients was compared with matched controls using voxel-based morphometry and nonparametric statistics. Gray matter density was reduced in bilateral dorsolateral prefrontal cortex and right thalamus and was strongly related to pain characteristics in a pattern distinct for neuropathic and non-neuropathic CBP. Our results imply that CBP is accompanied by brain atrophy and suggest that the pathophysiology of chronic pain includes thalamocortical processes.
-
The growth of injured axons in the adult mammalian CNS is limited after injury. Three myelin proteins, Nogo, MAG (myelin-associated glycoprotein), and OMgp (oligodendrocyte myelin glycoprotein), bind to the Nogo-66 receptor (NgR) and inhibit axonal growth in vitro. Transgenic or viral blockade of NgR function allows axonal sprouting in vivo. ⋯ Purified NgR(310)ecto-Fc protein was delivered intrathecally after midthoracic dorsal over-hemisection. Axonal sprouting of corticospinal and raphespinal fibers in NgR(310)ecto-Fc-treated animals correlates with improved spinal cord electrical conduction and improved locomotion. The ability of soluble NgR(310)ecto to promote axon growth and locomotor recovery demonstrates a therapeutic potential for NgR antagonism in traumatic spinal cord injury.