The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Experimental evidence supporting 1,1'-dimethyl-4,4'-bipyridinium [paraquat (PQ)] as a risk factor for Parkinson's disease (PD) is equivocal. Other agricultural chemicals, including dithiocarbamate fungicides such as manganese ethylenebisdithiocarbamate [maneb (MB)], are widely used in the same geographical regions as paraquat and also impact dopamine systems, suggesting that mixtures may be more relevant etiological models. This study therefore proposed that combined PQ and MB exposures would produce greater effects on dopamine (DA) systems than would either compound administered alone. ⋯ Reactive gliosis occurred only in response to combined PQ + MB in dorsal-medial but not ventral striatum. TH immunoreactivity and cell counts were reduced only by PQ + MB and in the substantia nigra but not ventral tegmental area. These synergistic effects of combined PQ + MB, preferentially expressed in the nigrostriatal DA system, suggest that such mixtures could play a role in the etiology of PD.
-
The physiological actions of neurotransmitter receptors are intimately linked to their proper neuronal compartment localization. Here we studied the effect of the metabotropic glutamate receptor (mGluR)-interacting proteins, Homer1a, b, and c, in the targeting of mGluR5 in neurons. We found that mGluR5 was exclusively localized in cell bodies when transfected alone in cultured cerebellar granule cells. ⋯ Depolarization of the neurons with a mixture of ionotropic glutamate receptor agonists, NMDA and kainate, or potassium channel blockers, tetraethylammonium and 4-aminopyridine, induced transient expression of endogenous Homer1a and persistent neuritic localization of transfected mGluR5 even long after degradation of Homer1a. These results suggest that Homer1a/b/c proteins are involved in the targeting of mGluR5 to dendritic synaptic sites and/or axons and that this effect can be regulated by neuronal activity. Because the activity-dependent effect of endogenous Homer1a was also long-lasting, the axonal targeting of mGluR5 by this protein is likely to play an important role in synaptic plasticity.
-
Although both pre- and postsynaptic mechanisms have been implicated in the analgesia produced by mu-opioids at the spinal cord, it is not known under what conditions these different controls come into play. Because the mu-opioid receptor (MOR) can be visualized in individual lamina II excitatory interneurons and internalizes into endosomes on ligand binding, we tested whether MOR internalization could be monitored and used to measure postsynaptic MOR signaling. To test whether endogenous opioids modulate these lamina II interneurons during noxious stimulation, we next assessed the magnitude of postsynaptic MOR internalization under a variety of nociceptive conditions. ⋯ We found, however, that noxious stimuli, under normal or inflammatory conditions, did not induce MOR internalization. Thus, endogenous enkephalins and endomorphins, thought to be released during noxious peripheral stimuli, do not modulate nociceptive messages via postsynaptic MORs on lamina II interneurons. We suggest that any endogenous opioids that are released by noxious stimuli target presynaptic MORs or delta-opioid receptors.
-
Dorsal root ganglion (DRG) neurons produce multiple sodium currents, including several different TTX-sensitive (TTX-S) currents and TTX-resistant (TTX-R) currents, which are produced by distinct sodium channels. We previously demonstrated that, after sciatic nerve transection, the levels of SNS and NaN sodium channel alpha-subunit transcripts and protein in small (18-30 micrometer diameter) DRG neurons are reduced, as are the amplitudes and densities of the slowly inactivating and persistent TTX-R currents produced by these two channels. In this study, we asked whether glial-derived neurotrophic factor (GDNF), which has been shown to prevent some axotomy-induced changes such as the loss of somatostatin expression in DRG neurons, can ameliorate the axotomy-induced downregulation of SNS and NaN TTX-R sodium channels. ⋯ We also show that intrathecally administered GDNF increases the amplitudes of the slowly inactivating and persistent TTX-R currents, and SNS and NaN protein levels, in peripherally axotomized DRG neurons in vivo. Finally, we demonstrate that GDNF upregulates the persistent TTX-R current in SNS-null mice, thus demonstrating that the upregulated persistent sodium current is not produced by SNS. Because TTX-R sodium channels have been shown to be important in nociception, the effects of GDNF on axotomized DRG neurons may have important implications for the regulation of nociceptive signaling by these cells.
-
It has been hypothesized that R-type Ca currents result from the expression of the alpha(1E) gene. To test this hypothesis we examined the properties of voltage-dependent Ca channels in mice in which the alpha(1E) Ca channel subunit had been deleted. Application of omega-conotoxin GVIA, omega-agatoxin IVA, and nimodipine to cultured cerebellar granule neurons from wild-type mice inhibited components of the whole-cell Ba current, leaving a "residual" R current with an amplitude of approximately 30% of the total Ba current. ⋯ We also identified a subpopulation of dorsal root ganglion (DRG) neurons from wild-type mice that expressed an SNX-482-sensitive component of the R current. However as with granule cells, most of the DRG R current was not blocked by SNX-482. We conclude that there exists a component of the R current that results from the expression of the alpha(1E) Ca channel subunit but that the majority of R currents must result from the expression of other Ca channel alpha subunits.