The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Odor coding relies on the activity of different classes of receptor neurons, each with distinct response characteristics. We have examined odor coding in a model olfactory organ, the maxillary palp of Drosophila. This organ contains only 120 olfactory receptor neurons, compartmentalized in sensory hairs called sensilla, and provides an opportunity to characterize all neurons in an entire olfactory organ. ⋯ The specificity of odor response is examined in detail for the neurons of one sensillum, which were found to differ in their relative responses to a homologous series of esters. Adaptation and cross-adaptation are documented, and cross-adaptation experiments demonstrate that the two neurons within one type of sensillum can function independently. The analysis of all neuronal types in this model olfactory organ is discussed in terms of its functional organization and the mechanisms by which it encodes olfactory information.
-
Comparative Study
Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the cortico-nigral circuits.
The prelimbic/medial orbital areas (PL/MO) of the rat prefrontal cortex are connected to substantia nigra pars reticulata (SNR) through three main circuits: a direct nucleus accumbens (NAcc)-SNR pathway, an indirect NAcc-SNR pathway involving the ventral pallidum (VP) and the subthalamic nucleus (STN), and a disynaptic cortico-STN-SNR pathway. The present study was undertaken to characterize the effect of PL/MO stimulation on SNR cells and to determine the contribution of these different pathways. The major pattern of responses observed in the SNR was an inhibition preceded by an early excitation and followed or not by a late excitation. ⋯ The early excitation, which was markedly decreased after blockade of the cortico-STN transmission by CNQX application into the STN, resulted from the activation of the disynaptic cortico-STN-SNR pathway. Finally, the blockade of the cortico-STN-VP circuit by CNQX application into STN or VP modified the influence of the trans-striatal circuits on SNR cells. This study suggests that, in the prefrontal cortex-basal ganglia circuits, the trans-subthalamic pathways, by their excitatory effects, participate in the shaping of the inhibitory influence of the direct striato-nigral pathway on SNR neurons.
-
It is well established that multiple stimulus dimensions (e.g., orientation and spatial frequency) are mapped onto the surface of striate cortex. However, the detailed organization of neurons within a local region of striate cortex remains unclear. Within a vertical column, do all neurons have the same response selectivities? And if not, how do they most commonly differ and why? To address these questions, we recorded from nearby pairs of simple cells and made detailed spatiotemporal maps of their receptive fields. ⋯ We also demonstrate that other parameters are not clustered, including the spatial phase (or symmetry) of the receptive field. Third, we show that spatial phase is the single parameter that accounts for most of the difference between receptive fields of nearby neurons. We consider the implications of this local diversity of spatial phase for population coding and construction of higher-order receptive fields.
-
Activity-dependent synaptic rearrangements during CNS development require NMDA receptor activation. The control of NMDA receptor function by developmentally regulated subunit expression has been proposed as one mechanism for this receptor dependence. We examined the phenotype of synaptic and extrasynaptic NMDA receptors during the development of synaptic load using the NMDA receptor 2B (NR2B)-selective antagonist ifenprodil. ⋯ In contrast, synaptic receptors included both a highly ifenprodil-sensitive (NR1/NR2B) component as well as a second population with lower ifenprodil sensitivity; the reduced ifenprodil block of EPSCs was attributable to synaptic receptors with lower ifenprodil sensitivity rather than to the appearance of ifenprodil-insensitive (NR1/NR2A) receptors. Our data indicate that the synaptic NMDA receptor complement changes quickly after synapse formation. We suggest that synapses containing predominately NR1/NR2B heteromers represent "immature" sites, whereas mature sites express NMDA receptors with a distinct, presumably triheteromeric, subunit composition.
-
We induced specific expectations of analgesia on four different parts of the body to understand how endogenous opioid systems are activated by expectancies. The left hand, right hand, left foot, and right foot were simultaneously stimulated by means of a subcutaneous injection of capsaicin, which produces a painful burning sensation. Specific expectations of analgesia were induced by applying a placebo cream on one of these body parts and by telling the subjects that it was a powerful local anesthetic. ⋯ These findings show that a spatially directed expectation of pain reduction is capable of inducing a specific effect only on the part of the body which is the target of the expectation. Most important, this specific effect is mediated by endogenous opioids, indicating that placebo-activated opioids do not act on the entire body but only on the part where expectancy is directed. This suggests that a highly organized and somatotopic network of endogenous opioids links expectation, attention, and body schema.