Naunyn-Schmiedeberg's archives of pharmacology
-
Naunyn Schmiedebergs Arch. Pharmacol. · Feb 2017
Nerolidol-loaded nanospheres prevent behavioral impairment via ameliorating Na+, K+-ATPase and AChE activities as well as reducing oxidative stress in the brain of Trypanosoma evansi-infected mice.
The aim of this study was to investigate the effect of nerolidol-loaded nanospheres (N-NS) on the treatment of memory impairment caused by Trypanosoma evansi in mice, as well as oxidative stress, and Na+, K+-ATPase and acetylcholinesterase (AChE) activities in brain tissue. Animals were submitted to behavioral tasks (inhibitory avoidance task and open-field test) 4 days postinfection (PI). Reactive oxygen species (ROS) and thiobarbituric acid-reactive substance (TBARS) levels and catalase (CAT), superoxide dismutase (SOD), Na+, K+-ATPase and AChE activities were measured on the fifth-day PI. ⋯ On the contrary, a significantly positive correlation between memory and Na+, K+-ATPase activity was observed (p < 0.01; r = 0.844). In conclusion, N-NS was able to reverse memory impairment and to prevent increased ROS and TBARS levels due to amelioration of Na+, K+-ATPase and AChE activities and to activation of the antioxidant enzymes, respectively. These results suggest that N-NS treatment may be a useful strategy to treat memory dysfunction and oxidative stress caused by T. evansi infection.
-
Naunyn Schmiedebergs Arch. Pharmacol. · Aug 2016
Gadolinium and ruthenium red attenuate remote hind limb preconditioning-induced cardioprotection: possible role of TRP and especially TRPV channels.
Remote ischemic preconditioning is a well reported therapeutic strategy that induces cardioprotective effects but the underlying intracellular mechanisms have not been widely explored. The current study was designed to investigate the involvement of TRP and especially TRPV channels in remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus (4 alternate cycles of inflation and deflation of 5 min each) was delivered using a blood pressure cuff tied on the hind limb of the anesthetized rat. ⋯ Remote hind limb preconditioning stimulus possibly activates TRPV channels on the heart or sensory nerve fibers innervating the heart to induce cardioprotective effects. Alternatively, remote hind limb preconditioning stimulus may also activate the mechanosensitive TRP and especially TRPV channels on the sensory nerve fibers innervating the skeletal muscles to trigger cardioprotective neurogenic signaling cascade. The cardioprotective effects of remote hind limb preconditioning may be mediated via activation of mechanosensitive TRP and especially TRPV channels.
-
Naunyn Schmiedebergs Arch. Pharmacol. · Mar 2016
Inhibition of the cardiac Na(+) channel α-subunit Nav1.5 by propofol and dexmedetomidine.
Propofol and dexmedetomidine are very commonly used sedative agents. However, several case reports demonstrated cardiovascular adverse effects of these two sedatives. Both substances were previously demonstrated to quite potently inhibit neuronal voltage-gated Na(+) channels. ⋯ Dexmedetomidine was generally more potent as compared to propofol. Propofol and dexmedetomidine seem to interact with the LA-binding site to inhibit the cardiac Na(+) channel Nav1.5 in a state-dependent manner. These data suggest that Nav1.5 is a hitherto unrecognized molecular component of some cardiovascular side effects of these sedative agents.
-
Naunyn Schmiedebergs Arch. Pharmacol. · Jan 2016
Possible role of thromboxane A2 in remote hind limb preconditioning-induced cardioprotection.
Remote hind limb preconditioning (RIPC) is a protective strategy in which short episodes of ischemia and reperfusion in a remote organ (hind limb) protects the target organ (heart) against sustained ischemic reperfusion injury. The present study was designed to investigate the possible role of thromboxane A2 in RIPC-induced cardioprotection in rats. Remote hind limb preconditioning was performed by four episodes of 5 min of inflation and 5 min of deflation of pressure cuff. ⋯ Remote hind limb preconditioning significantly attenuated ischemia/reperfusion-induced myocardial injury and produced cardioprotective effects. However, administration of ozagrel and seratrodast completely abolished the cardioprotective effects of RIPC suggesting the key role of thromboxane A2 in RIPC-induced cardioprotection. It may be concluded that brief episodes of preconditioning ischemia and reperfusion activates the thromboxane synthase enzyme that produces thromboxane A2, which may elicit cardioprotection either involving humoral or neurogenic pathway.
-
Naunyn Schmiedebergs Arch. Pharmacol. · Nov 2015
A streptozotocin-induced diabetic neuropathic pain model for static or dynamic mechanical allodynia and vulvodynia: validation using topical and systemic gabapentin.
Neuropathic vulvodynia is a state of vulval discomfort characterized by a burning sensation, diffuse pain, pruritus or rawness with an acute or chronic onset. Diabetes mellitus may cause this type of vulvar pain in several ways, so this study was conducted to evaluate streptozotocin-induced diabetes as a neuropathic pain model for vulvodynia in female rats. The presence of streptozotocin (50 mg/kg i.p.)-induced diabetes was initially verified by disclosure of pancreatic tissue degeneration, blood glucose elevation and body weight loss 5-29 days after a single treatment. ⋯ Topical gabapentin and the control gel vehicle significantly increased paw withdrawal threshold in the case of the static allodynia model and also paw withdrawal latency in the model for dynamic allodynia when compared with the streptozotocin-pretreated group. Likewise, in the case of static and dynamic vulvodynia, there was a significant antivulvodynia effect of systemic and topical gabapentin treatment. These outcomes substantiate the value of this model not only for allodynia but also for vulvodynia, and this was corroborated by the findings not only with systemic but also with topical gabapentin.