Magnetic resonance imaging
-
Localized cerebral in vivo 1H NMR spectroscopy (MRS) was performed in the anesthetized as well as the awake monkey using a novel vertical 7 T/60 cm MR system. The increased sensitivity and spectral dispersion gained at high field enabled the quantification of up to 16 metabolites in 0.1- to 1-ml volumes. Quantification was accomplished by using simulations of 18 metabolite spectra and a macromolecule (MM) background spectrum consisting of 12 components. ⋯ Periods with major motion artifacts were rejected, while a frequency/phase correction was performed on the remaining single spectra before averaging. In resting periods, both spectral amplitude and line width, that is, the voxel shim, were unaffected permitting reliable measurements. The corrected spectra obtained from the awake monkey afforded the reliable detection of 6-10 cerebral metabolites of 1-ml volumes.
-
High magnetic fields increase the sensitivity and spectral dispersion in magnetic resonance spectroscopy (MRS). In contrast, spectral peaks are broadened in vivo at higher field strength due to stronger susceptibility-induced effects. Strategies to minimize the spectral line width are therefore of critical importance. ⋯ Our study showed that even in well-shimmed areas assumed to have minimal macroscopic susceptibility variations, spectral line widths are tissue-specific exhibiting considerable regional variation. Therefore, an overall improvement of a gross spectral line width--directly correlated with improved spectral quality--can only be achieved when voxel volumes are significantly reduced. Our line width optimization was sufficient to permit clear glutamate (Glu)-glutamine separation, yielding distinct Glu maps for brain areas including regions of greatly different Glu concentration (e.g., ventricles vs. surrounding tissue).