Magnetic resonance imaging
-
Quantification of magnetic resonance (MR)-based relaxation parameters of tendons and ligaments is challenging due to their very short transverse relaxation times, requiring application of ultra-short echo-time (UTE) imaging sequences. We quantify both T1 and T2* in the quadriceps and patellar tendons of healthy volunteers at a field strength of 3 T and visualize the results based on 3D segmentation by using bivariate histogram analysis. We applied a 3D ultra-short echo-time imaging sequence with either variable repetition times (VTR) or variable flip angles (VFA) for T1 quantification in combination with multi-echo acquisition for extracting T2*. ⋯ The quadriceps tendon had higher mean T1 values of 662 ms ± 97 ms (VFA method) and 637 ms ± 40 ms (VTR method) compared to the patellar tendon. 3D volumetric visualization of the relaxation times revealed that T1 values are not constant over the volume of both tendons, but vary locally. This work provided additional data to build upon the scarce literature available on relaxation times in the quadriceps and patellar tendons. We were able to segment both tendons and to visualize the relaxation parameter distributions over the entire tendon volumes.
-
Multicenter Study Comparative Study
Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study.
Advanced imaging analysis for the prediction of tumor biology and modelling of clinically relevant parameters using computed imaging features is part of the emerging field of radiomics research. Here we test the hypothesis that a machine learning approach can distinguish grade 1 from higher gradings in meningioma patients using radiomics features derived from a heterogenous multicenter dataset of multi-paramedic MRI. ⋯ Machine learning using radiomics features derived from multi-parametric MRI is capable of high AUC scores with high sensitivity and specificity in classifying meningiomas between low and higher gradings despite heterogeneous protocols across different centers. Feature selection can be performed effectively even when extracting a large amount of data for radiomics fingerprinting.
-
Diffusion weighted magnetic resonance imaging (DWI) is known to differentiate between malignant and benign lesions via the apparent diffusion coefficient (ADC). Here, the value of diffusion kurtosis imaging (DKI) for differentiation and further characterization of benign and malignant breast lesions and their subtypes in a clinically feasible protocol is investigated. ⋯ DKI parameters and conventional ADC can differentiate between malignant and benign lesions. Differentiation performance was best for ADC. Different tumor grades were significantly different in ADC and DK, which may have an impact on therapy planning and monitoring. In our study, K did not add value to the diagnostic performance of DWI in a clinical setting.
-
3D Time-of-Flight (TOF) MR-angiography (MRA) substantially benefits from ultra-high magnetic field strengths (≥7 T) due to increased Signal-to-Noise ratio and improved contrast. However, high-resolution TOF-MRA usually requires long acquisition times. In addition, specific absorption rate constraints limit the choice of optimal pulse sequence parameters, especially if venous saturation is employed. ⋯ The combination of several independent techniques (VERSE, CS with acceleration factor 7.2, R = 0.001, Poisson disc radius of 80%, 3 segments) enables the application of high-resolution (0.31 mm isotropic) TOF-MRA with venous saturation at 7 T in clinical time settings (TA ≈ 5 min) and within the SAR limits.
-
Simultaneous Non-Contrast Angiography and Intraplaque Hemorrhage (SNAP) was developed for improved imaging of intraplaque hemorrhage (IPH). Its signal polarity also allows for non-contrast time-of-flight MR angiography (TOF). This study sought to compare SNAP and TOF in delineating carotid lumen using contrast-enhanced MRA (CE-MRA) as the reference standard. ⋯ SNAP, assisted by signal polarity information, demonstrated a higher agreement with CE-MRA in delineating carotid lumen compared to TOF, particularly in slices with plaque where flow conditions may be more complex.