Magnetic resonance imaging
-
Clinical Trial
Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range.
Detailed measurements of water diffusion within the prostate over an extended b-factor range were performed to assess whether the standard assumption of monoexponential signal decay is appropriate in this organ. From nine men undergoing prostate MR staging examinations at 1.5 T, a single 10-mm-thick axial slice was scanned with a line scan diffusion imaging sequence in which 14 equally spaced b factors from 5 to 3,500 s/mm(2) were sampled along three orthogonal diffusion sensitization directions in 6 min. Due to the combination of long scan time and limited volume coverage associated with the multi-b-factor, multidirectional sampling, the slice was chosen online from the available T2-weighted axial images with the specific goal of enabling the sampling of presumed noncancerous regions of interest (ROIs) within the central gland (CG) and peripheral zone (PZ). ⋯ Fits to biexponential decay functions yielded intersubject fast diffusion component fractions in the order of 0.73+/-0.08 for both CG and PZ ROIs, fast diffusion coefficients of 2.68+/-0.39 and 2.52+/-0.38 microm(2)/ms and slow diffusion coefficients of 0.44+/-0.16 and 0.23+/-0.16 um(2)/ms for CG and PZ ROIs, respectively. The difference between the slow diffusion coefficients within CG and PZ was statistically significant as assessed with a Mann-Whitney nonparametric test (P<.05). We conclude that a monoexponential model for water diffusion decay in prostate tissue is inadequate when a large range of b factors is sampled and that biexponential analyses are better suited for characterizing prostate diffusion decay curves.
-
Controlled Clinical Trial
Correlation between metabolite ratios and ADC values of prostate in men with increased PSA level.
Proton magnetic resonance spectroscopic imaging (MRSI) and diffusion-weighted imaging (DWI) were carried out in men with increased prostate-specific antigen (PSA) level. Forty subjects [controls (Group I) and patients (Groups II and III with PSA >20 and 4-20 ng/ml, respectively)] were investigated using endorectal coil at 1.5 T prior to transrectal ultrasound (TRUS)-guided biopsy. Metabolite ratio [citrate/(choline+creatine)] and apparent diffusion coefficient (ADC) were calculated for identical voxels. ⋯ A positive correlation was observed between metabolite ratio and ADC. MR predicted areas of malignancy in PZ in 15 of 20 patients; however, only six were positive on TRUS-guided biopsy perhaps due to high false-negative rate of TRUS-guided biopsy. Results show positive correlation between MRSI and DWI and their potential in detection of malignancy, thereby improving the diagnosis especially in patients with PSA level of 4-20 ng/ml.
-
Sensitivity-encoded phase undersampling has been combined with simultaneous slice excitation to produce a parallel MRI method with a high volumetric acquisition acceleration factor without the need for auxiliary stepped field coils. Dual-slice excitation was produced by modulating both spin and gradient echo sequences at +/-6 kHz. Frequency aliasing of simultaneously excited slices was prevented by using an additional gradient applied along the slice axis during data acquisition. ⋯ Image SNR and resolution was dependent on the ratio of the readout gradient to the additional slice gradient. A ratio of approximately 2:1 produced acceptable image quality. Use of RF pulses with additional excitation bands should enable the technique to be extended to volumetric acquisition acceleration factors in the range of x16-24 without the SNR limitations of pure partially parallel phase reduction methods.
-
Computer simulations and event-related functional MRI (ER-fMRI) experiments were performed to investigate the effects of single-trial averaging and the corresponding contrast-to-noise ratio (CNR) on the minimal resolvable hemodynamic timing difference between brain areas. Three ER-fMRI sessions with temporally delayed (250, 500 and 1,000 ms) visual stimulations between two hemifields, each with 70 repeated single trials, were examined on two subjects. From the computer simulation, the temporal resolution improved as the CNR increased, which reached 500 and 100 ms for CNRs of 1.55 and 6.44, respectively. ⋯ The 500- and 250-ms delays might be differentiable when more than 20 trials were averaged, but the results were subject-dependent. This study demonstrated that the CNR could be significantly improved by single-trial averaging, which led to an improved temporal resolution of ER-fMRI. Temporal resolution in the range of hundreds of milliseconds was subject-dependent, which might be attributed to the intrinsic spatial variations in the timing of the blood oxygenation level-dependent (BOLD) response.
-
A fast proton spectroscopic imaging pulse sequence based on the condition of steady-state free precession is presented. High 3D spatial and temporal resolution is achieved using simultaneous detection of both one spatial and one spectral dimension, with a time-dependent gradient cycle known from echo planar imaging. ⋯ The pulse sequence is implemented on a standard 4.7-T nuclear magnetic resonance animal imaging system. Measurements with a total measurement time of less than 2.5 min and a nominal voxel size of 6.75 microl using a total of 64 x 32 x 16 voxels are performed on phantoms and healthy rat brain in vivo allowing the rapid detection of signals from both uncoupled and J-coupled spin systems with high signal-to-noise ratio.