Regulatory toxicology and pharmacology : RTP
-
Regul. Toxicol. Pharmacol. · Nov 2016
ReviewEvaluation of the Tobacco Heating System 2.2. Part 1: Description of the system and the scientific assessment program.
This publication introduces a series of eight other publications describing the non-clinical assessment and initial clinical study of a candidate modified risk tobacco product (MRTP) - the Tobacco Heating System 2.2 (THS2.2). This paper presents background information on tobacco harm reduction, to complement the approaches aimed at increasing smoking cessation and reducing smoking initiation to reduce the morbidity and mortality caused by cigarette smoking. THS2.2 heats tobacco without combustion, and the resulting formation of harmful and potentially harmful constituents (HPHC) is greatly reduced compared with cigarette smoke. ⋯ Additional mechanistic endpoints, measured as part of in vivo studies, confirmed reduced impact on smoking-related disease networks. The clinical study confirmed the reduced exposure to HPHCs in smokers switching to THS2.2, and the associated transcriptomic study confirmed the utility of a gene expression signature, consisting of only 11 genes tested in the blood transcriptome of subjects enrolled in the clinical study, as a complementary measure of exposure response. The potential of THS2.2 as an MRTP is demonstrated by the assessment and additional publications cited in this series.
-
Regul. Toxicol. Pharmacol. · Nov 2016
Comparative StudyEvaluation of the Tobacco Heating System 2.2. Part 3: Influence of the tobacco blend on the formation of harmful and potentially harmful constituents of the Tobacco Heating System 2.2 aerosol.
The Tobacco Heating System (THS2.2), which uses "heat-not-burn" technology, generates an aerosol from tobacco heated to a lower temperature than occurs when smoking a combustible cigarette. The concentrations of harmful and potentially harmful constituents (HPHCs) are significantly lower in THS2.2 mainstream aerosol than in smoke produced by combustible cigarettes. Different tobacco types and 43 tobacco blends were investigated to determine how the blend impacted the overall reductions of HPHCs in the THS2.2 mainstream aerosol. ⋯ Blends containing high proportions of nitrogen-rich tobacco, e.g., air-cured, and some Oriental tobaccos, produced higher acetamide, acrylamide, ammonia, and nitrogen oxide yields than did other blends. Most HPHCs were found to be released mainly through the distillation of HPHCs present in the tobacco plug or after being produced in simple thermal reactions. HPHC concentrations in the THS2.2 aerosol may therefore be further minimized by limiting the use of flue- and fire-cured tobaccos which may be contaminated by HPHCs during the curing process and carefully selecting nitrogen rich tobaccos with low concentrations of endogenous HPHCs for use in the tobacco plug blend.
-
Regul. Toxicol. Pharmacol. · Nov 2016
Randomized Controlled Trial Comparative StudyEvaluation of the Tobacco Heating System 2.2. Part 8: 5-Day randomized reduced exposure clinical study in Poland.
The Tobacco Heating System (THS) 2.2, a candidate Modified Risk Tobacco Product (MRTP), is designed to heat tobacco without burning it. Tobacco is heated in order to reduce the formation of harmful and potentially harmful constituents (HPHC), and reduce the consequent exposure, compared with combustible cigarettes (CC). In this 5-day exposure, controlled, parallel-group, open-label clinical study, 160 smoking, healthy subjects were randomized to three groups and asked to: (1) switch from CCs to THS 2.2 (THS group; 80 participants); (2) continue to use their own non-menthol CC brand (CC group; 41 participants); or (3) to refrain from smoking (smoking abstinence (SA) group; 39 participants). ⋯ Increased product consumption and total puff volume were reported in the THS group. However, exposure to nicotine was similar to CC at the end of the confinement period. Reduction in urge-to-smoke was comparable between the THS and CC groups and THS 2.2 product was well tolerated.
-
Regul. Toxicol. Pharmacol. · Nov 2016
Comparative StudyEvaluation of the Tobacco Heating System 2.2 (THS2.2). Part 5: microRNA expression from a 90-day rat inhalation study indicates that exposure to THS2.2 aerosol causes reduced effects on lung tissue compared with cigarette smoke.
Modified-risk tobacco products (MRTP) are designed to reduce the individual risk of tobacco-related disease as well as population harm compared to smoking cigarettes. Experimental proof of their benefit needs to be provided at multiple levels in research fields. Here, we examined microRNA (miRNA) levels in the lungs of rats exposed to a candidate modified-risk tobacco product, the Tobacco Heating System 2.2 (THS2.2) in a 90-day OECD TG-413 inhalation study. ⋯ Upregulation of specific miRNA species, such as miR-146a/b and miR-182, indicated that they are causal elements in the inflammatory response in CC-exposed lungs, but they were reduced after THS2.2 aerosol exposure. Transforming transcriptomic data into protein activity based on corresponding downstream gene expression, we identified potential mechanisms for miR-146a/b and miR-182 that were activated by CC smoke but not by THS2.2 aerosol and possibly involved in the regulation of those miRNAs. The inclusion of miRNA profiling in systems toxicology approaches increases the mechanistic understanding of the complex exposure responses.
-
Regul. Toxicol. Pharmacol. · Nov 2016
Comparative StudyEvaluation of the Tobacco Heating System 2.2. Part 2: Chemical composition, genotoxicity, cytotoxicity, and physical properties of the aerosol.
The chemical composition, in vitro genotoxicity, and cytotoxicity of the mainstream aerosol from the Tobacco Heating System 2.2 (THS2.2) were compared with those of the mainstream smoke from the 3R4F reference cigarette. In contrast to the 3R4F, the tobacco plug in the THS2.2 is not burnt. The low operating temperature of THS2.2 caused distinct shifts in the aerosol composition compared with 3R4F. ⋯ The chemical composition of the THS2.2 aerosol was also evaluated under extreme climatic and puffing conditions. When generating the THS2.2 aerosol under "desert" or "tropical" conditions, the generation of HPHCs was not significantly modified. When using puffing regimens that were more intense than the standard Health Canada Intense (HCI) machine-smoking conditions, the HPHC yields remained lower than when smoking the 3R4F reference cigarette with the HCI regimen.