Molecular pharmacology
-
Molecular pharmacology · Nov 2006
Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor.
Although trastuzumab has been successfully used in patients with HER2-overexpressing metastatic breast cancer, resistance is a common problem that ultimately culminates in treatment failure. In light of the importance of Akt signaling in trastuzumab's antitumor action, we hypothesized that concurrent inhibition of Akt could enhance trastuzumab sensitivity and moreover reverse the resistant phenotype in HER2-positive breast cancer cells. Based on our finding that celecoxib mediates antitumor effects through the inhibition of phosphoinositide-dependent kinase-1 (PDK-1)/Akt signaling independently of cyclooxygenase-2 (COX-2), we used celecoxib as a scaffold to develop a COX-2-inactive PDK-1 inhibitor, 2-amino-N-[4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-acetamide (OSU-03012). ⋯ Medium dose-effect analysis indicates that OSU-03012 potentiated trastuzumab's antiproliferative effect in HER2-positive cells, especially in SKBR3/IGF-IR cells, through the down-regulation of PDK-1/Akt signaling. This synergy, however, was not observed in HER2-negative MDA-MB-231 cells. This combination treatment represents a novel strategy to increase the efficacy of trastuzumab and to overcome trastuzumab resistance in the treatment of HER2-positive breast cancer.
-
Molecular pharmacology · Oct 2006
Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms.
Molecular mechanisms underlying diabetes-induced painful neuropathy are poorly understood. We have demonstrated, in rats with streptozotocin-induced diabetes, that mechanical hyperalgesia, a common symptom of diabetic neuropathy, was correlated with an early increase in extracellular signal-regulated protein kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) phosphorylation in the spinal cord and dorsal root ganglion at 3 weeks after induction of diabetes. This change was specific to hyperalgesia because nonhyperalgesic rats failed to have such an increase. ⋯ To characterize the cellular events upstream of MAPKs, we have examined the role of the NMDA receptor known to be implicated in pain hypersensitivity. The prolonged blockade of this receptor during 7 days by (5R, 10S)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]-cyclohepten-5-10-imine hydrogen maleate (MK801; 5 microg/rat/day, i.t.), a noncompetitive NMDA receptor antagonist, reversed hyperalgesia developed by diabetic rats and blocked phosphorylation of all MAPKs. These results demonstrate for the first time that NMDA receptor-dependent phosphorylation of MAPKs in spinal cord neurons and microglia contribute to the establishment and longterm maintenance of painful diabetic hyperalgesia and that these kinases represent potential targets for pain therapy.
-
Molecular pharmacology · Sep 2006
Hexachlorophene inhibits Wnt/beta-catenin pathway by promoting Siah-mediated beta-catenin degradation.
Aberrant activation of Wnt/beta-catenin signaling and subsequent up-regulation of beta-catenin response transcription (CRT) is a critical event in the development of human colon cancer. Thus, Wnt/beta-catenin signaling is an attractive target for the development of anticancer therapeutics. In this study, we identified hexachlorophene as an inhibitor of Wnt/beta-catenin signaling from cell-based small-molecule screening. ⋯ This degradation pathway is Siah-1 and adenomatous polyposis colidependent, but glycogen synthase kinase-3beta and F-box beta-transducin repeat-containing protein-independent. In addition, hexachlorophene represses the expression of cyclin D1, which is a known beta-catenin target gene, and inhibits the growth of colon cancer cells. Our findings suggest that hexachlorophene attenuates Wnt/beta-catenin signaling through the Siah-1-mediated beta-catenin degradation.
-
Molecular pharmacology · Sep 2006
Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors.
Varenicline, a new nicotinic ligand based on the structure of cytisine, has recently been approved by the U. S. Food and Drug Administration for use as a smoking cessation aid. ⋯ It is remarkable that varenicline is a potent, full agonist at alpha7 receptors with an EC50 of 18 +/- 6 microM and an efficacy of 93 +/- 7% (relative to acetylcholine). Thus, whereas varenicline is a partial agonist at some heteromeric neuronal nicotinic receptors, it is a full agonist at the homomeric alpha7 receptor. Some combination of these actions may be involved in the mechanism of varenicline as a smoking cessation aid.
-
Molecular pharmacology · Jul 2006
Comparative StudyHigh accumulation of platinum-DNA adducts in strial marginal cells of the cochlea is an early event in cisplatin but not carboplatin ototoxicity.
Ototoxicity is a typical dose-limiting side effect of cancer chemotherapy with cisplatin but much less so with carboplatin. To elucidate the underlying molecular pathological mechanisms, we have measured the formation and persistence of drug-induced DNA adducts in the nuclei of inner ear cells of guinea pigs after short-term exposure to either cisplatin or carboplatin using immunofluorescence staining and quantitative image analysis. After application of carboplatin, all cells of the cochlea exhibited a similar burden of guanine-guanine intrastrand cross-links in DNA. ⋯ Because cisplatin ototoxicity is often attributed to oxidative stress mediated by the generation of radical oxygen species (ROS), we have measured in parallel the levels of the lead DNA oxidation product 8-oxoguanine (8-oxoG) in cochlear cryosections. Compared with basal levels in untreated control cochleas, no additional formation of 8-oxoG was detectable up to 48 h after cisplatin treatment in the DNA of either inner-ear cell type. This suggests that the generation of ROS may be a secondary event in cisplatin ototoxicity.