Resuscitation
-
Sudden cardiac arrest (CA) is one of the leading causes of death worldwide. Previously we demonstrated that administration of sodium sulfide (Na(2)S), a hydrogen sulfide (H(2)S) donor, markedly improved the neurological outcome and survival rate at 24 h after CA and cardiopulmonary resuscitation (CPR) in mice. In this study, we sought to elucidate the mechanism responsible for the neuroprotective effects of Na(2)S and its impact on the long-term survival after CA/CPR in mice. ⋯ These results suggest that administration of Na(2)S 1 min before CPR improves neurological function and survival rate at 10 days after CA/CPR by preventing water diffusion abnormality in the brain potentially via inhibiting MMP-9 activation early after resuscitation.
-
Investigating the effects of any intervention during cardiac arrest remains difficult. The ROSC after cardiac arrest score was introduced to facilitate comparison of rates of return of spontaneous circulation (ROSC) between different ambulance services. To study the influence of chest compression quality management (including training, real-time feedback devices, and debriefing) in comparison with conventional cardiopulmonary resuscitation (CPR), a matched-pair analysis was conducted using data from the German Resuscitation Registry, with the calculated ROSC after cardiac arrest score as the baseline. ⋯ Chest compression quality management leads to significantly higher ROSC rates than those predicted by the prognostic score (ROSC after cardiac arrest score). Matched-pair analysis shows that with conventional CPR, the observed ROSC rate was not significantly different from the predicted rate. Analysis shows a trend toward a higher ROSC rate for chest compression quality management in comparison with conventional CPR. It is unclear whether a single aspect of chest compression quality management or the combination of training, real-time feedback, and debriefing contributed to this result.
-
To evaluate the relationship between cause and outcome of in-hospital cardiac arrest. ⋯ In hospital cardiac arrest is caused mainly by cardiac and pulmonary causes, outcome depends on the cause, with a big variability.
-
In out-of-hospital cardiac arrest (OHCA) due to ventricular fibrillation (VF), VF may recur during resuscitation (recurrent VF) or fail to defibrillate (shock-resistant VF). While retrospective studies have suggested that amplitude spectral area (AMSA) and slope predict defibrillation, it is unknown whether the predictive power is influenced by VF type. We hypothesized that in witnessed OHCA with initial rhythm of VF that the utility for AMSA and slope to predict defibrillation would differ between shock-resistant and recurrent VF. ⋯ In witnessed OHCA with VF as initial rhythm, recurrent VF is associated with higher values of AMSA and slope and is likely to re-defibrillate. However, when VF is shock-resistant, AMSA and slope are highly predictive of defibrillation.