Resuscitation
-
To define factors associated with an improved outcome among patients suffering out-of-hospital cardiac arrest (OHCA) who were found in a non-shockable rhythm. ⋯ The overall survival among patients with an OHCA found in a non-shockable rhythm is very low (1.3%). Six factors associated with survival can be defined. When they are taken into account, survival varies between 12.6 and 0.15%.
-
The P450 eicosanoids epoxyeicosatrienoic acids (EETs) are produced by cytochrome P450 arachidonic acid epoxygenases and metabolized through multiple pathways, including soluble epoxide hydrolase (sEH). Pharmacological inhibition and gene deletion of sEH protect against ischemia/reperfusion injury in brain and heart, and against hypertension-related end-organ damage in kidney. We tested the hypothesis that sEH gene deletion improves survival, recovery of renal function and pathologic ischemic renal damage following transient whole-body ischemia induced by cardiac arrest (CA) and resuscitation. ⋯ Unexpectedly, survival in sEHKO mice was significantly lower than WT. Only 56% of sEHKO mice survived for 10 min (n=15, p=0.014 compared to WT) and no mice survived for 24 h after CA/CPR (p<0.0001 versus WT). We conclude that sEH plays an important role in cardiovascular regulation, and that reduced sEH levels or function reduces survival from cardiac arrest.
-
Within Europe and North America, the median annual mortality from snow avalanches between 1994 and 2003 was 141. There are two commonly used rescue devices: the avalanche transceiver, which is intended to speed up locating a completely buried person, and the avalanche airbag, which aims to prevent the person from being completely buried. ⋯ Our data showed that both the avalanche airbag and the avalanche transceiver reduce mortality. However, to improve the evaluation of rescue devices in the future, the data collection procedures should be reviewed and prospective trials should be considered, as the reliability of retrospective studies is limited.
-
Comparative Study
Sustained abdominal compression during CPR raises coronary perfusion pressures as much as vasopressor drugs.
This study investigated sustained abdominal compression as a means to improve coronary perfusion pressure (CPP) during cardiopulmonary resuscitation (CPR) and compared the resulting CPP augmentation with that achieved using vasopressor drugs. ⋯ During CPR noninvasive abdominal compression with the inflatable contoured cuff rapidly elevates the CPP, sustains the elevated CPP as long as the device is inflated, and is immediately and controllably reversible upon device deflation. Physical control of peripheral vascular resistance during CPR by abdominal compression has some advantages over pharmacological manipulation and deserves serious reconsideration, now that the limitations of pressor drugs during CPR have become better understood, including post-resuscitation myocardial depression and the need for intravenous access.