Resuscitation
-
A dramatic increase in plasma catecholamines has been demonstrated consistently following cardiac arrest and during CPR. The time course of this initial catecholamine surge after successful resuscitation has not been well studied. The purpose of this study was to measure plasma catecholamines after successful resuscitation and to determine their relationship to post-resuscitation hemodynamics. ⋯ A post-resuscitation adrenergic state is driven by a decline in MAP and PVR. Although seemingly compensatory, it may also contribute to the observed decline in cardiac function.
-
An ultrafast responding fluorescent-quenching PO2 probe allows time-resolved, in vivo measurement of PO2. This study describes several validation experiments of this new device in vitro, and reports its first use during cardiopulmonary resuscitation in an animal model of cardiac arrest. ⋯ The results demonstrate the feasibility of ultrafast PO2 measurement during CPR and low-flow states. They also demonstrate very rapid systemic effects of CPR upon aortic PO2. Among many other useful applications, the information derived from this technique may help to define the optimum conditions for successful defibrillation and restoration of spontaneous circulation.
-
Comparative Study
Titrated hypertonic/hyperoncotic solution for hypotensive fluid resuscitation during uncontrolled hemorrhagic shock in rats.
In volume- or pressure-controlled hemorrhagic shock (HS) a bolus intravenous infusion of hypertonic/hyperoncotic solution (HHS) proved beneficial compared to isotonic crystalloid solutions. During uncontrolled HS in animals, however, HHS by bolus increased blood pressure unpredictably, and increased blood loss and mortality. We hypothesized that a titrated i.v. infusion of HHS, compared to titrated lactated Ringer's solution (LR), for hypotensive fluid resuscitation during uncontrolled HS reduces fluid requirement, does not increase blood loss, and improves survival. ⋯ In prolonged uncontrolled HS, a titrated i.v. infusion of HHS can maintain controlled hypotension with only one-tenth of the volume of LR required, without increasing blood loss. This titrated HHS strategy may not increase the chance of long-term survival.
-
Randomized Controlled Trial Clinical Trial
Incomplete chest wall decompression: a clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression-decompression techniques.
Complete chest wall recoil improves hemodynamics during cardiopulmonary resuscitation (CPR) by generating relatively negative intrathoracic pressure and thus draws venous blood back to the heart, providing cardiac preload prior to the next chest compression phase. ⋯ Incomplete chest wall decompression was observed at some time during resuscitative efforts in 6 (46%) of 13 consecutive adult out-of-hospital cardiac arrests. The Hands-Off Technique decreased compression duty cycle but was 129 times more likely to provide complete chest wall recoil (OR: 129.0; CI: 43.4-382.0) compared to the Standard Hand Position without differences in accuracy of hand placement, depth of compression, or reported increase in fatigue or discomfort with its use. All forms of manual CPR tested (including the Standard Hand Position) in professional EMS rescuers using a recording manikin produced an inadequate depth of compression more than half the time. These data support development and testing of more effective means to deliver manual as well as mechanical CPR.