Upsala journal of medical sciences
-
Spread of antibiotic resistance is mediated by clonal lineages of bacteria that besides being resistant also possess other properties promoting their success. Some vaccines already in use, such as the pneumococcal conjugate vaccines, have had an effect on these successful clones, but at the same time have allowed for the expansion and resistance evolution of previously minor clones not covered by the vaccine. Since resistance frequently is horizontally transferred it will be difficult to generate a vaccine that covers all possible genetic lineages prone to develop resistance unless the vaccine target(s) is absolutely necessary for spread and/or disease development. Targeting the resistance mechanism itself by a vaccine is an interesting but hitherto unexplored approach.
-
Most of the literature on the consequences of emergence and spread of bacteria resistant to antibiotics among animals relate to the potential impact on public health. But antibiotics are used to treat sick animals, and resistance in animal pathogens may lead to therapy failure. This has received little scientific attention, and therefore, in this article, we discuss examples that illustrate the possible impact of resistance on animal health and consequences thereof. ⋯ Antibiotic resistance in animal bacteria can also have positive consequences by creating incentives for adoption of alternative regimes for treatment and prevention. It is probable that new antibiotic classes placed on the market in the future will not reach veterinary medicine, which further emphasizes the need to preserve the efficacy of currently available antibiotics through antibiotic stewardship. A cornerstone in this work is prevention, as healthy animals do not need antibiotics.
-
The emergence and spread of antibiotic resistance among human pathogens is a relevant problem for human health and one of the few evolution processes amenable to experimental studies. In the present review, we discuss some basic aspects of antibiotic resistance, including mechanisms of resistance, origin of resistance genes, and bottlenecks that modulate the acquisition and spread of antibiotic resistance among human pathogens. ⋯ Because of this, we propose that the emergence and spread of antibiotic resistance can only be understood in a multi-parameter space. Measuring the effect on antibiotic resistance of parameters such as contact rates, transfer rates, integration rates, replication rates, diversification rates, and selection rates, for different genes and organisms, growing under different conditions in distinct ecosystems, will allow for a better prediction of antibiotic resistance and possibilities of focused interventions.
-
The need for global data about the scale of antibiotic resistance (ABR) in a geographical explicit and timely manner has been identified by many stakeholders, including the World Health Organization. This primer should help defining the objectives, scale, scope, and structure of possible future efforts. Stakeholders and their expected information demands were identified to generate an inventory of surveillance objectives. ⋯ Essential features that define different surveillance systems have been listed and taken into consideration when suggesting templates for future efforts. Putting ABR on the global health map is a daunting task as it requires acceptance, agreements, and engagement but also concessions at many different levels. Given the existing gaps in the global diagnostic service landscape only a step-wise approach which defines achievable aims, objectives, and milestones will succeed to produce a sustainable system of international co-operative surveillance of ABR.
-
Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. ⋯ Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.