Upsala journal of medical sciences
-
Combination antibiotic therapy for Gram-negative sepsis is controversial. The present review provides a brief summary of the existing knowledge on combination therapy for severe infections with multidrug-resistant Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae. Empirical combination antibiotic therapy is recommended for severe sepsis and septic shock to reduce mortality related to inappropriate antibiotic treatment. ⋯ In vitro data suggest that combinations can be effective even if the bacteria are resistant to the individual antibiotics, although existing evidence is insufficient to support the choice of combinations and explain the synergistic effects observed. In vitro models can be used to screen for effective combinations that can later be validated in animal or clinical studies. Further, in the absence of clinical evidence, in vitro data might be useful in supporting therapeutic decisions for severe infections with multidrug-resistant Gram-negative bacteria.
-
With increasing antibiotics resistance, there is an urgent need for novel infection therapeutics. Since antimicrobial peptides provide opportunities for this, identification and optimization of such peptides have attracted much interest during recent years. Here, a brief overview of antimicrobial peptides is provided, with focus placed on how selected hydrophobic modifications of antimicrobial peptides can be employed to combat also more demanding pathogens, including multi-resistant strains, without conferring unacceptable toxicity.
-
This paper addresses: 1) Situations where human behaviour is involved in relation to antibiotics, focusing on providers and consumers; 2) Theories about human behaviour and factors influencing behaviour in relation to antibiotics; 3) How behaviour in relation to antibiotics can change; and, 4) Antibiotic mainstreaming as an approach to facilitate changes in human behaviour as regards antibiotics. Influencing human behaviour in relation to antibiotics is a complex process which includes factors like knowledge, attitudes, social norms, socio-economic conditions, peer pressure, experiences, and bio-physical and socio-behavioural environment. Further, key concepts are often perceived in different ways by different individuals. ⋯ In conclusion, just providing correct knowledge is not sufficient although it is a pre-requisite for behaviour modification in the desired direction. We can never change the behaviour of any other human, but we can facilitate for others to change their own behaviour. One possibility is to implement 'antibiotic mainstreaming' as a potentially effective way for behaviour modification, i.e. to address consequences for maintaining effective antibiotics in all activities and decisions in society.
-
Spread of antibiotic resistance is mediated by clonal lineages of bacteria that besides being resistant also possess other properties promoting their success. Some vaccines already in use, such as the pneumococcal conjugate vaccines, have had an effect on these successful clones, but at the same time have allowed for the expansion and resistance evolution of previously minor clones not covered by the vaccine. Since resistance frequently is horizontally transferred it will be difficult to generate a vaccine that covers all possible genetic lineages prone to develop resistance unless the vaccine target(s) is absolutely necessary for spread and/or disease development. Targeting the resistance mechanism itself by a vaccine is an interesting but hitherto unexplored approach.
-
Current use, misuse, and overuse of antibiotics raise dangers and ethical dilemmas that cannot be solved in isolation, exclusively within a health system building block or even within the health sector only. There is a need to tackle antibiotic resistance emergence and containment on levels ranging from individuals, households, and the communities, to health care facilities, the entire health sector, and finally to national and global levels. We analyse emergence of antibiotic resistance based on interdependencies between health systems resources. ⋯ This will involve, in a comprehensive way, patients, health facilities where they receive care, health systems to which these facilities pertain, and the wider national context as well as the global community that influences the functioning of these health systems. In order to be effective and sustainable in both high and low-resource settings, implementation of containment interventions at all these levels needs to be managed based on existing theories and models of change. Although ministries of health and the global community must provide vision and support, it is important to keep in mind that containment interventions for antibiotic resistance will target individuals, consumers as well as providers.