Bone
-
Absolute 10-year fracture risk is the preferred method for fracture risk assessment. The validity of applying published fracture rates from one population to another population is uncertain. ⋯ Swedish 10-year fracture risk data are generally applicable to the Canadian female population referred for clinical BMD testing, though fracture rates were underestimated in the oldest and highest risk subgroups due to healthy selection bias.
-
Adequate blood supply and sufficient mechanical stability are necessary for timely fracture healing. Damage to vessels impairs blood supply; hindering the transport of oxygen which is an essential metabolite for cells involved in repair. The degree of mechanical stability determines the mechanical conditions in the healing tissues. ⋯ The magnitude of pressure increased even though weight bearing and IFM remained unchanged. Oxygen tensions were initially high in the haematoma and fell gradually with a low oxygen environment first established after four to five days. This study illustrates that in bone healing the local environment for cells may not be considered constant with regard to oxygen tension, pressure and temperature.
-
It has been widely assumed that osteoclasts play a pivotal role during the entire process of fracture healing. Bisphosphonates (BPs) are anti-catabolic agents commonly used to treat metabolic bone diseases including osteoporosis, minimizing fracture incidence. Yet, fractures do occur in these patients and the potential for negative effects of BPs on healing has been suggested. We aimed to examine the effect of different dosing regimes of the potent BP zoledronic acid (ZA) on early endochondral fracture repair and later callus remodeling in a normal bone healing environment. ⋯ Osteoclast inhibition with ZA does not delay endochondral fracture repair in healthy rats. Bolus ZA treatment increased net callus size and strength at 6 weeks while allowing hard callus remodeling to proceed in the long term, albeit more slowly than control. Prolonged bisphosphonate dosing during repair does not delay endochondral ossification but can significantly affect remodeling long after the drug is ceased.
-
Randomized Controlled Trial
Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial.
Denosumab is a fully human monoclonal antibody that inhibits receptor activator of nuclear factor-kappa B ligand (RANKL), an essential mediator of osteoclast formation, function, and survival that has been shown to decrease bone turnover and increase bone mineral density (BMD) in treated patients. We assessed the long-term efficacy and safety of denosumab, and the effects of discontinuing and restarting denosumab treatment in postmenopausal women with low bone mass. ⋯ In postmenopausal women with low BMD, long-term denosumab treatment led to gains in BMD and reduction of BTM throughout the course of the study. The effects on bone turnover were fully reversible with discontinuation and restored with subsequent retreatment.