Critical care medicine
-
Critical care medicine · Mar 2007
Multicenter StudyAssessing contemporary intensive care unit outcome: an updated Mortality Probability Admission Model (MPM0-III).
To update the Mortality Probability Model at intensive care unit (ICU) admission (MPM0-II) using contemporary data. ⋯ MPM0-II risk factors remain relevant in predicting ICU outcome, but the 1993 model significantly overpredicts mortality in contemporary practice. With the advantage of a much larger sample size and the addition of new variables and interaction effects, MPM0-III provides more accurate comparisons of actual vs. expected ICU outcomes.
-
Critical care medicine · Mar 2007
ReviewLung-protective ventilation strategies in neonatology: what do we know--what do we need to know?
Randomized controlled trials (RCTs) investigating various lung-protective ventilation modes or strategies in newborn infants have failed to show clear differences in mortality or bronchopulmonary dysplasia. This review tries to identify possible reasons for this observation, applying modern concepts on ventilator-induced lung injury and lung-protective ventilation. ⋯ RCTs investigating lung-protective ventilation in neonates have mainly focused on comparing high-frequency ventilation with CMV. Most of these RCTs show weaknesses in the design, which may explain the inconsistent effect of high-frequency ventilation on bronchopulmonary dysplasia. RCTs on CMV only focused on comparing various modes and settings, leaving the important question whether reducing tidal volume or increasing positive end-expiratory pressure is also lung protective in newborn infants unanswered.
-
Critical care medicine · Mar 2007
Levosimendan improves right ventriculovascular coupling in a porcine model of right ventricular dysfunction.
Experimental data suggest that levosimendan has pulmonary vasodilatory properties which, in combination with its positive inotropic effects, would render it particularly attractive for the treatment of right ventricular dysfunction. To test this hypothesis, we developed an experimental model of right ventricular failure and analyzed the effects of levosimendan on ventriculovascular coupling between the right ventricle and pulmonary artery (PA). ⋯ In an experimental model of acute right ventricular dysfunction, levosimendan improved global hemodynamics and optimized right ventriculovascular coupling via a moderate increase in right ventricular contractility and a mild reduction of right ventricular afterload.