Critical care medicine
-
Critical care medicine · Jul 2022
Observational StudyLung-Dependent Areas Collapse, Monitored by Electrical Impedance Tomography, May Predict the Oxygenation Response to Prone Ventilation in COVID-19 Acute Respiratory Distress Syndrome.
ICUs have had to deal with a large number of patients with acute respiratory distress syndrome COVID-19, a significant number of whom received prone ventilation, which is a substantial consumer of care time. The selection of patients that we have to ventilate in prone position seems interesting. We evaluate the correlation between the percentage of collapsed dependent lung areas in the supine position, monitoring by electrical impedance tomography and the oxygenation response (change in Pao2/Fio2 ratio) to prone position. ⋯ Dependent lung areas collapse (> 13.5%), monitored by electrical impedance tomography, has an excellent positive predictive value (94%) of improved oxygenation during prone ventilation.
-
Critical care medicine · Jul 2022
Lung Ultrasound and Electrical Impedance Tomography During Ventilator-Induced Lung Injury.
Lung damage during mechanical ventilation involves lung volume and alveolar water content, and lung ultrasound (LUS) and electrical impedance tomography changes are related to these variables. We investigated whether these techniques may detect any signal modification during the development of ventilator-induced lung injury (VILI). ⋯ Data suggest as follows. First, what determines the LUS score is the ratio between water and gas and not water alone. Therefore, caution is needed when an improvement of LUS score follows a variation of the lung gas content, as after a PEEP increase. Second, what determines the end-expiratory difference in lung impedance is the strain level that may disrupt the intercellular junction, therefore altering lung impedance. In addition, the increase in extravascular lung water during VILI development contributed to the observed decrease in impedance.
-
Critical care medicine · Jul 2022
Patient Harm and Institutional Avoidability of Out-of-Hours Discharge From Intensive Care: An Analysis Using Mixed Methods.
Out-of-hours discharge from ICU to the ward is associated with increased in-hospital mortality and ICU readmission. Little is known about why this occurs. We map the discharge process and describe the consequences of out-of-hours discharge to inform practice changes to reduce the impact of discharge at night. ⋯ We identified significant limitations in out-of-hours care provision following overnight discharge from ICU. Transfer to the ward before 16:00 should be facilitated where possible. Our work highlights changes to help make day time discharge more likely. Where discharge after 16:00 is unavoidable, support systems should be implemented to ensure the safety of patients discharged from ICU at night.