Epilepsy research
-
Our goal was to perform a systematic review of the literature on the insertion of vagal nerve stimulators (VNS) for refractory status epilepticus (RSE) and its impact on the control of RSE. ⋯ We currently cannot recommend the use of VNS for RSE. Oxford level 4, GRADE D evidence exists to suggest improvement in seizure control with the use of urgent VNS in generalized RSE. No comments can be made on the utility of VNS in focal RSE. Further prospective study is warranted.
-
The association between amygdala enlargement (AE) and temporal lobe epilepsy (TLE) has increasingly been reported. However, the pathology of AE remains poorly understood. The purpose of this study was to explore AE pathology using (11)C-methionine (Met) positron emission tomography (PET)/computed tomography (CT) in patients who have TLE with AE. ⋯ This study revealed that some TLE patients with AE showed increased (11)C-Met uptake in the enlarged amygdala. (11)C-Met PET/CT is potentially useful for the evaluation of AE pathology, and may provide beneficial information for appropriate decision-making.
-
We aimed to investigate the usefulness of coregistration of positron emission tomography (PET) and magnetic resonance imaging (MRI) findings (PET/MRI) and of coregistration of PET/MRI with subtraction ictal single-photon emission computed tomography (SPECT) coregistered to MRI (SISCOM) (PET/MRI/SISCOM) in localizing the potential epileptogenic zone in patients with drug-resistant epilepsy. We prospectively included 35 consecutive patients with refractory focal epilepsy whose presurgical evaluation included a PET study. Separately acquired PET and structural MRI images were coregistered for each patient. ⋯ PET/MRI/SISCOM coregistration, performed in 4 of these patients, was concordant in 3 (75%). After epilepsy surgery, 13 (68%) patients are seizure-free after a mean follow-up of 4.5 years. PET/MRI and PET/MRI/SISCOM coregistration are useful for determining the potential epileptogenic zone and thus for planning invasive EEG studies and surgery more precisely, especially in patients without lesions on MRI.
-
Autosomal dominant lateral temporal epilepsy (ADLTE) is a genetic focal epilepsy syndrome characterized by prominent auditory or aphasic symptoms. Mutations in LGI1 account for less than 50% of ADLTE families. We assessed the impact of LGI1 microrearrangements in a collection of ADLTE families and sporadic lateral temporal epilepsy (LTE) patients, and investigated novel ADLTE and LTE patients. ⋯ We describe two novel ADLTE families with predominant visual auras segregating pathogenic LGI1 mutations. These findings support the notion that, in addition to auditory symptoms, other types of auras can be found in patients carrying LGI1 mutations. The identification of a novel microdeletion in LGI1, the second so far identified, suggests that LGI1 microrearrangements may not be exceptional.
-
The antiepileptic drug lacosamide [(R)-2-acetamido-N-benzyl-3-methoxypropanamide], a chiral functionalized amino acid, was originally identified by virtue of activity in the mouse and rat maximal electroshock (MES) test. Attention was drawn to lacosamide because of its high oral potency and stereoselectivity. Lacosamide is also active in the 6 Hz seizure model but inactive against clonic seizures in rodents induced by subcutaneous pentylenetetrazol, bicuculline and picrotoxin. ⋯ However, unlike these agents, lacosamide does not affect sustained repetitive firing (SRF) on a time scale of hundreds of milliseconds or affect fast inactivation of voltage-gated sodium channels; however, it terminates SRF on a time scale of seconds by an apparent effect on sodium channel slow inactivation. Lacosamide shifts the slow inactivation curve to more hyperpolarized potentials and enhances the maximal fraction of channels that are in the slow inactivated state. Currently, lacosamide is the only known antiepileptic drug in clinical practice that exerts its anticonvulsant activity predominantly by selectively enhancing slow sodium channel inactivation.