Toxicology
-
Fungal keratitis is a sight-threatening infection of the cornea. It sometimes leads to loss of the eye. Despite an expanding range of fungal pathogens, there are only few therapeutic agents for its treatment available. ⋯ Hydrogen peroxide exposure did not increase cellular toxicity of voriconazole at concentrations from 10 to 250 microg /mL. After preincubation with TNF-alpha, LPS, or IL-6 for 24h and subsequent voriconazole treatment for 24h, no significant decrease in proliferation or viability was observed. This study showed no significant toxicity for voriconazole on CEC, TMC, RPE cells, or human corneal endothelium when administered in therapeutic concentrations up to 250 microg /mL.
-
Oroxylin A is a flavonoid that is found in the roots of Scutellaria baicalensis Georgi. Here, we investigated the antitumor effect of oroxylin A in human cervical cancer HeLa cell line in vitro and in vivo. We found that after inoculated with the HeLa cells the mice treated with oroxylin A showed a significant decrease of tumor volumes and tumor weight compared with the control. ⋯ Next, activation of the caspase cascade for both the extrinsic and intrinsic pathways were demonstrated in vivo and in vitro, including caspase-8, -9 and -3. We also found that the expression of Bcl-2 protein decreased, which leading to an increase of the Bax/Bcl-2 ratio. Our results showed that oroxylin A exhibited strong antitumor effect in HeLa cell line and apoptosis induction involved in it.
-
Increasing evidences in both experimental and clinical studies suggest that oxidative stress is involved in the pathogenesis of diabetic tissue damage. Pancreatic beta-cell death is the cause of decreased insulin production in diabetes. Streptozotocin (STZ) is widely used to induce experimental diabetes due to its ability to selectively target and destroy insulin producing pancreatic beta-cells via the formation of both reactive oxygen species (ROS) and RNS (reactive nitrogen species). ⋯ Investigating the signaling pathways, we found that STZ administration caused the activation of phospho-ERK1/2, phospho-p38, NF-kappaB and destruction of mitochondrial transmembrane potential, release of cytochrome c as well as activation of caspase 3 in the pancreas tissue keeping the levels of total ERK1/2 and p38 significantly unchanged. Treatment of animals with AA (at a dose of 20mg/kg body weight, orally) both prior and post to the STZ administration effectively reduced these adverse effects by inhibiting the excessive ROS and RNS formation as well as by down-regulating the activation of phospho-ERK1/2, phospho-p38, NF-kappaB and mitochondrial dependent signal transduction pathways leading to apoptotic cell death. Combining all, these results suggest that AA plays some beneficial roles against STZ-induced diabetes.
-
In the present study, we investigated the effects of manganese chloride (MnCl2) on cell cycle progression in A549 cells used as a model of Mn-induced lung toxicity. Cells were treated with various concentrations of MnCl2 (0, 0.01, 0.1, 0.5, 1.0 or 2.0 mM) for 24, 48 or 72 h. Cell proliferation was determined with MTT assay and mitotic index measurement and apoptosis was measured by flow cytometer. ⋯ In addition, the decreasing of Cyclin A level and the increasing of p53 and WAF1/p21 were also induced by MnCl2 treatment at 20 h. The expression of Cyclin D1, Cyclin E and Cdc25A proteins was not altered in manganese-treated cells at both 20 and 28 h. Our results indicate that MnCl2 orderly induces G0/G1 and S phase arrest in A549 cells, the decreasing of Cdk4, Cdk2 and Cyclin A, and the increasing of p53 and Cdks inhibitor WAF1/p21 might be responsible for the G0/G1 arrest, and the decreasing of Cdk4 and Cdk2 levels for the S phase arrest.
-
Aminoglycosides are bactericidal aminoglycosidic aminocyclitols. They are cost effective and therefore widely used, however ototoxicity is a prominent dose-limiting side effect. Aminoglycoside induced ototoxicity leads to permanent bilaterally severe, high-frequency sensorineural hearing loss and temporary vestibular hypofunction. ⋯ The development of aminoglycoside otoprotective strategies is a primary goal in ototoxicity research. Animal experiments have provided encouraging evidence for the protection of cochlear hair cells and neurons from aminoglycoside toxicity. However, the extent to which such protection, generalize to human ototoxicity remains unresolved.