Brain, behavior, and immunity
-
Brain Behav. Immun. · Feb 2015
Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy.
Many commonly used chemotherapeutics including oxaliplatin are associated with the development of a painful chemotherapy-induced peripheral neuropathy (CIPN). This dose-limiting complication can appear long after the completion of therapy causing a significant reduction in quality-of-life and impeding cancer treatment. We recently reported that activation of the Gi/Gq-coupled A3 adenosine receptor (A3AR) with selective A3AR agonists (i.e., IB-MECA) blocked the development of chemotherapy induced-neuropathic pain in models evoked by distinct agents including oxaliplatin without interfering with their anticancer activities. ⋯ These events did not require lymphocytic mobilization since oxaliplatin did not induce CD45(+)/CD3(+) T-cell infiltration into the spinal cord. A3AR agonists blocked the development of neuropathic pain with beneficial effects strongly associated with the modulation of spinal neuroinflammatory processes: attenuation of astrocytic hyperactivation, inhibition of TNF and IL-1β production, and an increase in IL-10 and IL-4. These results suggest that inhibition of an astrocyte-associated neuroinflammatory response contributes to the protective actions of A3AR signaling and continues to support the pharmacological basis for selective A3AR agonists as adjuncts to chemotherapeutic agents for the management of chronic pain.
-
Brain Behav. Immun. · Feb 2015
Calpain-2 contributes to neuropathic pain following motor nerve injury via up-regulating interleukin-6 in DRG neurons.
Motor nerve injury by L5 ventral root transection (L5-VRT) initiates interleukin-6 (IL-6) up-regulation in primary afferent system contributing to neuropathic pain. However, the early upstream regulatory mechanisms of IL-6 after L5-VRT are still unknown. Here, we monitored both the activity of calpain, a calcium-dependent protease suggested as one of the earliest mediators for cytokine regulation, and the expression of IL-6 in bilateral L4-L6 dorsal root ganglias (DRGs) soon after L5-VRT. ⋯ Inhibition of calpain by pre-treatment with MDL28170 (25mg/kg, i.p.) attenuated the rat mechanical allodynia and prevented the early up-regulation of IL-6 following L5-VRT. Addition of exogenous calpain-2 onto the surface of left L5 DRG triggered a temporal allodynia and increased IL-6 in bilateral DRGs simultaneously. Taken together, the early increase of calpain-2 in L5-VRT rats might be responsible for the induction of allodynia via up-regulating IL-6 in DRG neurons.
-
Brain Behav. Immun. · Feb 2015
Programming of formalin-induced nociception by neonatal LPS exposure: Maintenance by peripheral and central neuroimmune activity.
The immune and nociceptive systems are shaped during the neonatal period where they undergo fine-tuning and maturation. Painful experiences during this sensitive period of development are known to produce long-lasting effects on the immune and nociceptive responses. It is less clear, however, whether inflammatory pain responses are primed by neonatal exposure to mild immunological stimuli, such as with lipopolysaccharide (LPS). ⋯ These data suggest neonatal LPS exposure produces developmentally regulated changes in formalin-induced behavioural responses, peripheral and central IL-1β levels, as well as mast cell degranulation following noxious stimulation later in life. These findings highlight the importance of immune activation during the neonatal period in shaping immune response and pain sensitivity later in life. This is of clinical relevance given the high prevalence of bacterial infection during the neonatal period, particularly in the vulnerable population of preterm infants admitted to neonatal intensive care units.
-
Brain Behav. Immun. · Feb 2015
Randomized Controlled TrialNegative affectivity predicts decreased pain tolerance during low-grade inflammation in healthy women.
Experimental animal studies provided evidence for a synergistic effect of immunological and psychological stressors on subsequent sickness behaviours. Up to now, little corroborating evidence for such synergy exists for humans, in whom it may provide a mechanism leading to the expression of functional somatic symptoms. The aim of the present study was to determine an interaction between stress(-vulnerability) and an immunological activation on experimental pain sensitivity, i.e., pressure pain threshold and tolerance in healthy humans. ⋯ NA moderated the effects of inflammation on pain tolerance. This finding is consistent with a synergistic model whereby inflammation may lower the threshold for pain reporting in individuals with increased vulnerability for somatic symptom reporting.
-
Brain Behav. Immun. · Feb 2015
Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury.
Interleukin-33 (IL-33) is a member of the interleukin-1 cytokine family and highly expressed in the naïve mouse brain and spinal cord. Despite the fact that IL-33 is known to be inducible by various inflammatory stimuli, its cellular localization in the central nervous system and role in pathological conditions is controversial. Administration of recombinant IL-33 has been shown to attenuate experimental autoimmune encephalomyelitis progression in one study, yet contradictory reports also exist. ⋯ Additionally, IL-33 treatment increased expression of T-regulatory cell marker FoxP3 and reduced expression of M1 marker iNOS in the spleen. Taken together, these results provide the first evidence that IL-33 administration is beneficial after CNS trauma. Treatment with IL33 may offer a novel therapeutic strategy for patients with acute contusion SCI.