Brain, behavior, and immunity
-
Brain Behav. Immun. · Aug 2010
Intrathecal injection of an alpha seven nicotinic acetylcholine receptor agonist attenuates gp120-induced mechanical allodynia and spinal pro-inflammatory cytokine profiles in rats.
Nicotinic acetylcholine receptors (nAchRs) are not only key receptors in the autonomic nervous system, but also are present on immune cells. The alpha seven subunit of nAchR (alpha7nAchR) suppresses pro-inflammation in peripheral monocytes by decreasing pro-inflammatory cytokine production. In spinal cord, alpha7nAchRs are found on microglia, which are known to induce and maintain pain. ⋯ A second alpha7nAchR agonist, GTS-21, also significantly reversed gp120-induced mechanical allodynia and lumbar spinal cord levels of pro-inflammatory cytokine mRNAs and IL-1beta protein. A role of microglia is suggested by the observation that intrathecal choline suppressed the gp120-induced expression of, cd11b, a macrophage/microglial activation marker. Taken together, the data support that alpha7nAchR may be a novel target for treating pain where microglia maintain the pro-inflammatory state within the spinal cord.
-
Brain Behav. Immun. · Aug 2010
The direction of synaptic plasticity mediated by C-fibers in spinal dorsal horn is decided by Src-family kinases in microglia: the role of tumor necrosis factor-alpha.
Previous studies have shown that Src-family kinases (SFKs) are selectively activated in spinal microglia following peripheral nerve injury and the activated SFKs play a key role for the development of neuropathic pain. To investigate the underlying mechanism, in the present study the effect of SFKs on long-term potentiation (LTP) at C-fiber synapses in spinal dorsal horn, which is believed as central mechanism of neuropathic pain, was investigated in adult rats. Electrophysiological data revealed that pretreatment with either microglia inhibitor (minocycline, 200 microM) or SFKs inhibitors (PP2, 100 microM and SU6656, 200 microM) reversed the effect of high frequency stimulation (HFS), that is, HFS, which induces long-term potentiation (LTP) normally, induced long-term depression (LTD) after inhibition of either microglia or SFKs. ⋯ Furthermore, we found that the inhibitory effects of minocycline or SU6656 on spinal LTP were reversed by spinal application of rat recombinant tumor necrosis factor-alpha (TNF-alpha 0.5 ng/ml, 200 microl). HFS failed to induce LTP of C-fiber evoked field potentials in TNF receptor-1 knockout mice and in rats pretreated with TNF-alpha neutralization antibody (0.6 microg/ml, 200 microl). The results suggested that in spinal dorsal horn activation of SFKs in microglia might control the direction of plastic changes at C-fiber synapses and TNF-alpha might be involved in the process.
-
Brain Behav. Immun. · Aug 2010
Synergism between immunostimulation and prevention of surgery-induced immune suppression: an approach to reduce post-operative tumor progression.
A unique opportunity to eradicate cancer is presented immediately after the excision of the primary tumor, but surgical procedures often induce the release of immunosuppressing factors that render cell mediated immunity ineffective. Here we tested the hypothesis that integration of peri-operative immunostimulation and blockade of immunosuppression could synergistically improve post-operative anti-metastatic immunity and long-term survival. ⋯ Immunostimulation could be rendered ineffective post-operatively due to immunosuppression; therefore integrating endocrine-blocker therapies into the realm of peri-operative immunotherapy could optimize immune control over residual disease, potentially improving clinical outcomes.
-
Brain Behav. Immun. · May 2010
Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion.
CNS injury stimulates the expression of several proinflammatory cytokines and chemokines, some of which including MCP-1 (also known as CCL2), KC (CXCL1), and MIP-2 (CXCL2) act to recruit Gr-1(+) leukocytes at lesion sites. While earlier studies have reported that neutrophils and monocytes/macrophages contribute to secondary tissue loss after spinal cord injury (SCI), recent work has shown that depletion of Gr-1(+) leukocytes compromised tissue healing and worsened functional recovery. Here, we demonstrate that astrocytes distributed throughout the spinal cord initially contribute to early neuroinflammation by rapidly synthesizing MCP-1, KC, and MIP-2, from 3 up to 12h post-SCI. ⋯ Analysis of the contribution of MyD88-dependent receptors revealed that the astrocytic expression of MCP-1, KC, and MIP-2 was mediated by the IL-1 receptor (IL-1R1), and not by TLR2 or TLR4. Flow cytometry analysis of cells recovered from the spinal cord of MyD88- and IL-1R1-knockout mice confirmed the presence of significantly fewer type I "inflammatory" monocytes and the almost complete absence of neutrophils at 12h and 4days post-SCI. Together, these results indicate that MyD88/IL-1R1 signals regulate the entry of neutrophils and, to a lesser extent, type I "inflammatory" monocytes at sites of SCI.
-
Brain Behav. Immun. · May 2010
Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis.
Experimental autoimmune encephalomyelitis (EAE) is a mouse model for multiple sclerosis, where disease is mediated by autoantigen-specific T cells. Although there is evidence linking CD4(+) T cells that secrete IL-17, termed Th17 cells, and IFN-gamma-secreting Th1 cells with the pathogenesis of EAE, the precise contribution of these T cell subtypes or their associated cytokines is still unclear. We have investigated the infiltration of CD4(+) T cells that secrete IFN-gamma, IL-17 or both cytokines into CNS during development of EAE and have examined the role of T cells in microglial activation. ⋯ Co-culture experiments, using mixed glia and MOG-specific T cells, revealed that T cells that secreted IFN-gamma and IL-17 were potent activators of pro-inflammatory cytokines but T cells that secrete IFN-gamma, but not IL-17, were less effective. In contrast both Th1 and Th1/Th17 cells enhanced MHC-class II and co-stimulatory molecule expression on microglia. Our findings suggest that T cells which secrete IL-17 or IL-17 and IFN-gamma infiltrate the CNS prior to the onset of clinical symptoms of EAE, where they may mediate CNS inflammation, in part, through microglial activation.