Annals of biomedical engineering
-
In this article, we present a point process method to assess dynamic baroreflex sensitivity (BRS) by estimating the baroreflex gain as focal component of a simplified closed-loop model of the cardiovascular system. Specifically, an inverse Gaussian probability distribution is used to model the heartbeat interval, whereas the instantaneous mean is identified by linear and bilinear bivariate regressions on both the previous R-R intervals (RR) and blood pressure (BP) beat-to-beat measures. The instantaneous baroreflex gain is estimated as the feedback branch of the loop with a point-process filter, while the RR-->BP feedforward transfer function representing heart contractility and vasculature effects is simultaneously estimated by a recursive least-squares filter. ⋯ To illustrate the application, we have applied the proposed point process model to experimental recordings from 11 healthy subjects in order to monitor cardiovascular regulation under propofol anesthesia. We present quantitative results during transient periods, as well as statistical analyses on steady-state epochs before and after propofol administration. Our findings validate the ability of the algorithm to provide a reliable and fast-tracking assessment of BRS, and show a clear overall reduction in baroreflex gain from the baseline period to the start of propofol anesthesia, confirming that instantaneous evaluation of arterial baroreflex control of HR may yield important implications in clinical practice, particularly during anesthesia and in postoperative care.
-
Comparative Study
Validation of a semi-classical signal analysis method for stroke volume variation assessment: a comparison with the PiCCO technique.
This study proposes a Semi-Classical Signal Analysis (SCSA) method for stroke volume (SV) variations assessment from arterial blood pressure measurements. One of the SCSA parameters, the first systolic invariant (INVS₁), has been shown to be linearly related to SV. To technically validate this approach, the comparison between INVS₁ and SV measured with the currently used PiCCO technique was performed during a 15-min recording in 20 mechanically ventilated patients in intensive care. A strong correlation was estimated by linear regression and cross-correlation analysis (mean coefficient = 0.90 ± 0.01 SEM at the two tests).
-
This article investigates the possibility of extracting gastric motility (GM) information from finger photoplethysmographic (PPG) signals non-invasively. Now-a-days measuring GM is a challenging task because of invasive and complicated clinical procedures involved. It is well-known that the PPG signal acquired from finger consists of information related to heart rate and respiratory rate. ⋯ The coherence analysis results demonstrate that a moderate coherence (range 0.5-0.7, SD 0.13, p < 0.05) exists between EGG and PPG signal in the "slow wave" frequency band, without any significant change in the level of coherence in postprandial state. These results indicate that finger PPG signal contains GM-related information. The findings are sufficiently encouraging to motivate further exploration of finger PPG as a non-invasive source of GM-related information.
-
In patients with severe hemorrhage, complications such as shock or death may occur if the patient is not treated appropriately and expeditiously. To create a hemostat kit for severe hemorrhage, ultraviolet light irradiation was applied to photocrosslinkable chitosan hydrogel and calcium alginate. As a hemorrhage model, the femoral arteries and veins of anesthetized rats were cut. ⋯ WBC count increased 1 day after hemostasis. AST and ALT increased 1 day after hemostasis, but it decreased 3 days later. The photocrosslinkable chitosan hydrogel and calcium alginate were biodegraded at 3 and 28 days, respectively, by neutrophils and keratinocyte chemoattractant.
-
Millions of people worldwide are diagnosed each year with valvular heart disease, resulting in hundreds of thousands of valve replacement operations. Prosthetic valve replacements are designed to correct narrowing or backflow through the valvular orifice. Although commonly used, these therapies have serious disadvantages including morbidity associated with long-term anticoagulation and limited durability necessitating repeat operations. ⋯ Tissue engineered heart valves hold promise as a viable substitute to outperform existing valve replacements. An essential component to the development of tissue engineered heart valves is a bioreactor. It is inside the bioreactor that the scaffold and cells are gradually conditioned to the biochemical and mechanical environment of the valve to be replaced.