FASEB journal : official publication of the Federation of American Societies for Experimental Biology
-
Elevated tumor cyclooxygenase 2 (COX-2) expression is associated with increased angiogenesis, tumor invasion and promotion of tumor cell resistance to apoptosis. The mechanism(s) by which COX-2 exerts its cytoprotective effects are not completely understood but may be due to an imbalance of pro- and anti-apoptotic gene expression. To analyze COX-2-dependent gene expression and apoptosis, we created cell lines constitutively expressing COX-2 cDNA in sense and antisense orientations. ⋯ In contrast to previous studies in other cell types, in nonsmall cell lung cancer cells survivin was expressed in a cell cycle-independent manner. When established in SCID mice in vivo, COX-2 antisense-derived tumors had significantly decreased survivin levels while COX-2 sense-derived tumors demonstrated elevated levels compared with controls. In accord with these findings, survivin and COX-2 were frequently upregulated and co-expressed in human lung cancers in situ.
-
Complement fragment 5a (C5a)-C5a receptor (C5aR) signaling plays an essential role in neutrophil innate immunity. Blockade of either the ligand or the receptor improves survival rates in experimental sepsis. In the current study, sepsis was induced in rats by cecal ligation/puncture. ⋯ The reduction and reconstitution of C5aR correlate with the loss and restoration of innate immune functions of blood neutrophils (chemotaxis and reactive oxygen species production), respectively. Quantitative measurements of C5aR on blood neutrophils are highly predictive of survival or death during sepsis. These data suggest that neutrophil C5aR content represents an essential component of an efficient defense system in sepsis and may serve as a prognostic marker for the outcome.
-
The effects of neonatal dexamethasone (DEX) treatment on spatial learning and hippocampal synaptic plasticity were investigated in adult rats. Spatial learning in reference and working memory versions of the Morris maze was impaired in DEX-treated rats. In hippocampal slices of DEX rats, long-term depression was facilitated and potentiation was impaired. ⋯ In addition, the activity of alphaCaMKII, an NMDA receptor complex associated protein kinase, was increased in PSD of DEX rats. The results indicate that neonatal treatment with DEX causes alterations in composition and function of the hippocampal NMDA receptor complex that persist into adulthood. These alterations likely explain the deficits in hippocampal synaptic plasticity and spatial learning induced by neonatal DEX treatment.
-
The ex vivo effects of passive mechanical stretch on the activation of nuclear factor-kappaB (NF-kappaB) pathways in skeletal muscles from normal and mdx mouse, a model of Duchenne muscular dystrophy (DMD), were investigated. The NF-kappaB/DNA binding activity of the diaphragm muscle was increased by the application of axial mechanical stretch in a time-dependent manner. The increased activation of NF-kappaB was associated with a concomitant increase in I-kappaB (IkappaB) kinase activity and the degradation of IkappaBalpha protein. ⋯ Compared with normal diaphragm, the basal level of NF-kappaB activity was higher in muscles from mdx mice, and it was further enhanced in mechanically stretched muscles. Furthermore, activation of NF-kappaB and increased expression of inflammatory cytokines IL-1beta and tumor necrosis factor alpha in the mdx mouse precede the onset of muscular dystrophy. Our results show that mechanical stretch activates the classical NF-kappaB pathway and this pathway could be predominately active in DMD.