Journal of neurotrauma
-
Journal of neurotrauma · Jun 2009
Combination therapies for traumatic brain injury: prospective considerations.
Traumatic brain injury (TBI) initiates a cascade of numerous pathophysiological events that evolve over time. Despite the complexity of TBI, research aimed at therapy development has almost exclusively focused on single therapies, all of which have failed in multicenter clinical trials. Therefore, in February 2008 the National Institute of Neurological Disorders and Stroke, with support from the National Institute of Child Health and Development, the National Heart, Lung, and Blood Institute, and the Department of Veterans Affairs, convened a workshop to discuss the opportunities and challenges of testing combination therapies for TBI. ⋯ Food and Drug Administration be included in early discussions of experimental design. Furthermore, it was agreed that an efficient and validated screening platform for candidate therapeutics, sensitive and clinically relevant biomarkers and outcome measures, and standardization and data sharing across centers would greatly facilitate the development of successful combination therapies for TBI. Overall there was great enthusiasm for working collaboratively to act on these recommendations.
-
Journal of neurotrauma · Jun 2009
An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast.
Explosive blast has been extensively used as a tactical weapon in Operation Iraqi Freedom (OIF) and more recently in Operation Enduring Freedom(OEF). The polytraumatic nature of blast injuries is evidence of their effectiveness,and brain injury is a frequent and debilitating form of this trauma. In-theater clinical observations of brain-injured casualties have shown that edema, intracranial hemorrhage, and vasospasm are the most salient pathophysiological characteristics of blast injury to the brain. ⋯ This model was developed during Phase I of the DARPA (Defense Advanced Research Projects Agency) PREVENT (Preventing Violent Explosive Neurotrauma) blast research program. A second objective is to present data that illustrate the capabilities of this model to study the proximal biomechanical causes and the resulting pathophysiological, biochemical,neuropathological, and neurological consequences of explosive blast injury to the swine brain. In the concluding section of this article, the advantages and limitations of the model are considered, explosive and air-overpressure models are compared, and the physical properties of an explosion are identified that potentially contributed to the in-theater closed head injuries resulting from explosions of improvised explosive devices (IEDs).
-
Journal of neurotrauma · Jun 2009
Hemorrhagic shock after experimental traumatic brain injury in mice: effect on neuronal death.
Traumatic brain injury (TBI) from blast injury is often complicated by hemorrhagic shock (HS) in victims of terrorist attacks. Most studies of HS after experimental TBI have focused on intracranial pressure; few have explored the effect of HS on neuronal death after TBI, and none have been done in mice. We hypothesized that neuronal death in CA1 hippocampus would be exacerbated by HS after experimental TBI. ⋯ CA3 neuron counts did not differ between groups. Fluorojade C staining confirmed neurodegeneration in CA1 in the 90-min CCI+HS group. Our data suggest a critical time window for exacerbation of neuronal death by HS after CCI and may have implications for blast injury victims in austere environments where definitive management is delayed.