Journal of neurotrauma
-
Journal of neurotrauma · Jun 2011
Time-dependent changes in serum biomarker levels after blast traumatic brain injury.
Neuronal and glial proteins detected in the peripheral circulating blood after injury can reflect the extent of the damage caused by blast traumatic brain injury (bTBI). The temporal pattern of their serum levels can further predict the severity and outcome of the injury. As part of characterizing a large-animal model of bTBI, we determined the changes in the serum levels of S100B, neuron-specific enolase (NSE), myelin basic protein (MBP), and neurofilament heavy chain (NF-H). ⋯ However, serum NF-H levels increased in a unique, rapid manner, peaking at 6 h post-injury only in animals exposed to severe blast with poor clinical and pathological outcomes. We conclude that the sudden increase in serum NF-H levels following bTBI may be a useful indicator of injury severity. If additional studies verify our findings, the observed early peak of serum NF-H levels can be developed into a useful diagnostic tool for predicting the extent of damage following bTBI.
-
Journal of neurotrauma · Jun 2011
Sustained survival and maturation of adult neural stem/progenitor cells after transplantation into the injured brain.
Multipotent neural stem/progenitor cells (NS/NPCs) that are capable of generating neurons and glia offer enormous potential for treating neurological diseases. Adult NS/NPCs that reside in the mature mammalian brain can be isolated and expanded in vitro, and could be a potential source for autologous transplantation to replace cells lost to brain injury or disease. When these cells are transplanted into the normal brain, they can survive and become region-specific cells. ⋯ Many cells migrated out of the injection site into surrounding areas expressing astrocyte or oligodendrocyte markers. Whole cell patch-clamp recording at 4 weeks showed that transplanted cells possessed typical mature glial cell properties. These data demonstrate that adult NS/NPCs can survive in an injured heterotypic environment for an extended period and become functional cells.
-
Journal of neurotrauma · Jun 2011
Long-term complications of decompressive craniectomy for head injury.
There is currently much interest in the use of decompressive craniectomy for intracranial hypertension. Though technically straightforward, the procedure is not without significant complications. A retrospective analysis was undertaken of 164 patients who had had a decompressive craniectomy for severe head injury in the years 2004 to 2009 at the two major hospitals in Western Australia. ⋯ Complications attributable to the subsequent cranioplasty included: sudden death due to massive cerebral swelling in 3 patients (2.2%), infection requiring removal of the bone flap in 16 patients (11.6%), and bone flap resorption requiring augmentation in 10 patients (7.2%). After excluding simple complications such as subdural effusion and brain herniation through the skull defect and some patients who died as a direct consequence of traumatic brain or extracranial injury, 81 patients (55.5%) had at least one complication after decompressive craniectomy. The occurrence of at least one complication after decompressive craniectomy was significantly associated with an increased risk of prolonged stay in the hospital or rehabilitation facility (odds ratio 2.54, 95%confidence interval 1.22,5.24, p=0.013), after adjusting for predicted risk of unfavorable outcome.
-
Journal of neurotrauma · Jun 2011
Intermittent fasting in mice does not improve hindlimb motor performance after spinal cord injury.
Previously, we reported that every-other-day-fasting (EODF) in Sprague-Dawley rats initiated after cervical spinal cord injury (SCI) effectively promoted functional recovery, reduced lesion size, and enhanced sprouting of the corticospinal tract. More recently, we also showed improved behavioral recovery with EODF after a moderate thoracic contusion injury in rats. In order to make use of transgenic mouse models to study molecular mechanisms of EODF, we tested here whether this intermittent fasting regimen was also beneficial in mice after SCI. ⋯ EODF had no beneficial effect on tissue sparing and failed to improve behavioral recovery of hindlimb function. Hence this observation stands in stark contrast to our earlier observations in Sprague-Dawley rats. This is likely due to the difference in the metabolic response to intermittent fasting as evidenced by different ketone levels during the first week of the EODF regimen.
-
Journal of neurotrauma · Jun 2011
Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury.
Blast-induced traumatic brain injury (TBI) is the signature insult in combat casualty care. Survival with neurological damage from otherwise lethal blast exposures has become possible with body armor use. We characterized the neuropathologic alterations produced by a single blast exposure in rats using a helium-driven shock tube to generate a nominal exposure of 35 pounds per square inch (PSI) (positive phase duration ∼ 4 msec). ⋯ Increased blood-brain barrier permeability (as measured by IgG staining) was seen at 24 h and primarily affected the contralateral cortex. Axonal injury was the most prominent feature during the initial 2 weeks following blast exposure, although degeneration of other neuronal processes was also present. Strikingly, silver staining revealed otherwise undetected abnormalities, and therefore represents a recommended outcome measure in future studies of blast TBI.