Journal of neurotrauma
-
Journal of neurotrauma · Jun 2011
Acute effects of a selective cannabinoid-2 receptor agonist on neuroinflammation in a model of traumatic brain injury.
Proposed therapeutic strategies for attenuating secondary traumatic brain injury (TBI) include modulation of acute neuroimmune responses. The goal of this study was to examine the acute effects of cannabinoid-2 receptor (CB(2)R) modulation on behavioral deficits, cerebral edema, perivascular substance P, and macrophage/microglial activation in a murine model of TBI. Thirty male C57BL/6 mice underwent sham surgery, or cortical contusion impact injury (CCI). ⋯ Significant reductions were found for cerebral edema, number of perivascular areas of substance P immunoreactivity, and number of activated macrophages/microglial cells in the injured brains of 0-1966-treated mice compared to vehicle-treated mice. The findings show that the effects of the CB(2)R agonist 0-1966 on edema, substance P immunoreactivity, and macrophage/microglial activation, were associated with recovery of acute motor and exploratory deficits. This study provides evidence of acute neuroprotective effects derived from selective CB(2)R activation that may represent an avenue for further development of novel therapeutic agents in the treatment of TBI.
-
Journal of neurotrauma · Jun 2011
A selective phosphodiesterase-4 inhibitor reduces leukocyte infiltration, oxidative processes, and tissue damage after spinal cord injury.
We tested the hypothesis that a selective phosphodiesterase type 4 inhibitor (PDE4-I; IC486051) would attenuate early inflammatory and oxidative processes following spinal cord injury (SCI) when delivered during the first 3 days after injury. Rats receiving a moderately severe thoracic-clip-compression SCI were treated with the PDE4-I (0.5, 1.0, and 3.0 mg/kg IV) in bolus doses from 2-60 h post-injury. Doses at 0.5 mg/kg and 1.0 mg/kg significantly decreased myeloperoxidase (MPO) enzymatic activity (neutrophils), expression of a neutrophil-associated protein and of ED-1 (macrophages), and estimates of lipid peroxidation in cord lesion homogenates at 24 h and 72 h post-injury by 25-40%. ⋯ The PDE4-I treatment also increased white matter volume near the lesion at 8 weeks after SCI. In conclusion, the PDE4-I reduced key markers of oxidative stress and leukocyte infiltration, producing cellular protection, locomotor improvements, and a reduction in neuropathic pain. Early inhibition of PDE4 is neuroprotective after SCI when given acutely and briefly at sufficient doses.
-
Journal of neurotrauma · Jun 2011
Pioglitazone reduces secondary brain damage after experimental brain trauma by PPAR-γ-independent mechanisms.
Inflammatory and ischemic processes contribute to the development of secondary brain damage after mechanical brain injury. Recent data suggest that thiazolidinediones (TZDs), a class of drugs approved for the treatment of non-insulin-dependent diabetes mellitus, effectively reduces inflammation and brain lesion by stimulation of the peroxisome proliferator-activated receptor-γ (PPAR-γ). The present study investigates the influence of the TZD pioglitazone and rosiglitazone on inflammation and secondary brain damage after experimental traumatic brain injury (TBI). ⋯ PPAR-γ and PPAR-γ target gene expression was not induced by pioglitazone and rosiglitazone. In line with these results, pioglitazone-mediated protection was not reversed by T0070907. The results indicate that the neuroprotective effects of pioglitazone are not solely related to PPAR-γ-dependent mechanisms.