Journal of neurotrauma
-
Journal of neurotrauma · Jul 2011
Glycomimetic improves recovery after femoral injury in a non-human primate.
In adult mammals, restoration of function after peripheral nerve injury is often poor and effective therapies are not available. Previously we have shown in mice that a peptide which functionally mimics the human natural killer cell (HNK)-1 trisaccharide epitope significantly improves the outcome of femoral nerve injury. Here we evaluated the translational potential of this treatment using primates. ⋯ Better outcome at 160 days after surgery in treated versus control animals was also confirmed by improved quadriceps muscle force, enhanced H-reflex amplitude, decreased H-reflex latency, and larger diameters of regenerated axons. No adverse reactions to the mimetic, in particular immune responses resulting in antibodies against the HNK-1 mimetic or immune cell infiltration into the damaged nerve, were observed. These results indicate the potential of the HNK-1 mimetic as an efficient, feasible, and safe adjunct treatment for nerve injuries requiring surgical repair in clinical settings.
-
Visual pursuit is a key descriptor of the minimally conscious state (above 80% of cases). It is also observable in about 20% of subjects in vegetative state. Its reappearance after severe brain damage anticipates a favorable outcome, with recovery of consciousness in 73% of subjects (45% in the absence of it). ⋯ After 230 days of follow-up or more, it was observed in 89% and 88% of post-traumatic and vascular subjects and in 67% of anoxic-hypoxic patients. Rating with the Glasgow Outcome Scale (GOS) was better in those subjects with recovered visual tracking and inversely correlated with the time of reappearance in post-traumatic and vascular subjects; also the subjects with late recovery of eye tracking (230 days or more) had better GOS outcome than those without it. The observation of visual tracking reappearing in subjects in vegetative state would reflect recuperation of the brainstem-cortical interaction and overall brain functional organization that are thought to sustain consciousness and are interfered with by the "functional disconnection," resulting in the vegetative state.
-
Journal of neurotrauma · Jul 2011
Curcumin attenuates the expression and secretion of RANTES after spinal cord injury in vivo and lipopolysaccharide-induced astrocyte reactivation in vitro.
Curcumin has been proposed for treatment of various neuroinflammatory and neurodegenerative conditions, including post-traumatic inflammation during acute spinal cord injury (SCI). In this study, we examined whether curcumin anti-inflammation involves regulation of astrocyte reactivation, with special focus on the injury-induced RANTES (regulated on expression normal T-cell expressed and secreted) from astrocytes in acute SCI. Male Sprague-Dawley (SD) rats were subjected to impact injury of the spinal cord followed by treatment with curcumin (40 mg/kg i.p.). ⋯ Furthermore, cortical neurons cultured with astrocyte conditioned medium (ACM) conditioned with both LPS and curcumin (LPS-curcumin/ACM), which characteristically exhibited decreased RANTES expression when compared with ACM from astrocytes treated with LPS alone (LPS/ACM), showed higher level of cell viability and lower level of cell death as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction activity assay and lactate dehydrogenase release assay, respectively. Knockdown of RANTES expression by siRNA (siRANTES) shows reduced RANTES expression and release from LPS-reactivated astrocytes, and ACM obtained from this condition (LPS-siRANTES/ACM) becomes less cytotoxic as compared with the LPS-ACM. Therefore, curcumin reduction of robust RANTES production in reactivated astrocytes both in vitro and in vivo may contribute to its neuroprotection and potential application in SCI.
-
Journal of neurotrauma · Jul 2011
Inhibition of Ras-GTPase farnesylation and the ubiquitin-proteasome system or treatment with angiotensin-(1-7) attenuates spinal cord injury-induced cardiac dysfunction.
Cardiovascular diseases are one of the principal causes of death and disability in people with spinal cord injury (SCI). The present study was designed to investigate if acute treatment with FPTIII (an inhibitor of Ras-GTPase farnesylation) or MG132 (an inhibitor of ubiquitin-proteasome pathway [UPS]) or administration of angiotensin-(1-7), also known as Ang-(1-7), (a known inhibitor of cardiac NF-kB) would be cardioprotective. The weight drop technique produced a consistent contusive injury of the spinal cord at the T13 segment. ⋯ Percent recovery (%R) in P(max) and CF in hearts from control animals were 48±6 and 50±5, respectively, whereas none of the hearts from animals with SCI recovered after 30 min of ischemia. Treatment with FPTIII, MG 132, or Ang-(1-7) before ischemia for 30 min led to significant recovery of heart function following ischemia in SCI-6 but not in SCI-12 animals. Thus we have shown that acute treatments with FPTIII, MG132, or Ang-(1-7) improve cardiac recovery following ischemic insult in animals with SCI and may represent novel therapeutic agents for preventing ischemia-induced cardiac dysfunction in patients with SCI.