Journal of neurotrauma
-
Journal of neurotrauma · May 2012
Comparative StudyTBI sex dependently upregulates ET-1 to impair autoregulation, which is aggravated by phenylephrine in males but is abrogated in females.
Traumatic brain injury (TBI) contributes to morbidity in children, and boys are disproportionately represented. Endothelin-1 (ET-1) contributes to impaired autoregulation via oxygen (O₂⁻) after TBI in piglets, but its relative role in males compared with females has not been previously investigated. Increased cerebral perfusion pressure (CPP) via phenylephrine (Phe) sex dependently improves impairment of autoregulation after TBI through modulation of extracellular signal-related kinase (ERK) mitogen-activated protein kinase (MAPK) upregulation, aggravated in males, but blocked in females. ⋯ These data indicate that TBI upregulates ET-1 more in males than in females. Elevation of CPP with Phe sex dependently prevents impairment of cerebral autoregulation after TBI through modulation of ET-1, O₂⁻, and ERK mediated impairment of K channel vasodilation. These observations advocate for the consideration of development of sex-based therapies for the treatment of hemodynamic sequelae of pediatric TBI.
-
Journal of neurotrauma · May 2012
Preventing flow-metabolism uncoupling acutely reduces axonal injury after traumatic brain injury.
We have previously presented evidence that the development of secondary traumatic axonal injury is related to the degree of local cerebral blood flow (LCBF) and flow-metabolism uncoupling. We have now tested the hypothesis that augmenting LCBF in the acute stages after brain injury prevents further axonal injury. Data were acquired from rats with or without acetazolamide (ACZ) that was administered immediately following controlled cortical impact injury to increase cortical LCBF. ⋯ Furthermore, early LCBF augmentation prevented the injury-associated increase in the number of stained axons from 3-24 h. Additional robust stereological analysis of impaired axonal transport and neurofilament compaction in the corpus callosum and cingulum underlying the injury core confirmed the amelioration of β-APP axon density, and showed a trend, but no significant effect, on RMO14-positive axons. These data underline the importance of maintaining flow-metabolism coupling immediately after injury in order to prevent further axonal injury, in at least one population of injured axons.
-
Journal of neurotrauma · May 2012
Comparative StudyEffects of hypothermia on cerebral autoregulatory vascular responses in two rodent models of traumatic brain injury.
Traumatic brain injury (TBI) can trigger disturbances of cerebral pressure autoregulation that can translate into the generation of secondary insults and increased morbidity/mortality. Few therapies have been developed to attenuate the damaging consequences of disturbed autoregulatory control, although some suggest that hypothermia may exert such protection. Here we reexamine this issue of traumatically induced autoregulatory disturbances and their modulation by hypothermic intervention, examining these phenomena in two different models of TBI. ⋯ However, with LFPI, the use of 2 h of hypothermia provided partial vascular protection. These results clearly illustrate that TBI can alter the cerebral autoregulatory vascular response to sequentially induced hypotensive insult, whereas the use of post-traumatic hypothermia provides benefit. Collectively, these studies also demonstrate that different animal models of TBI can evoke different biological responses to injury.
-
Journal of neurotrauma · May 2012
Optimizing suture middle cerebral artery occlusion model in C57BL/6 mice circumvents posterior communicating artery dysplasia.
The suture middle cerebral artery occlusion (MCAO) model is used worldwide in both academia and industry. However, the variable occurrence of dysplasia in posterior communicating arteries (PcomAs) induces high mortality and instability in permanent MCAO models, limiting the model's application to transient focal ischemia. In particular, high mortality in intraluminal suture MCAO models is associated with the dysplasia of PcomAs in C57BL/6 mice. ⋯ The morphology of PcomAs was examined under a microscope after MICROFIL(®) infusion. Neurological outcome, infarct volume, and mortality were examined within 28 days. Optimizing the silicone coating on an 8-0 suture tip, we were able to reduce the model mortality to zero after permanent occlusion in C57BL/6 and produce stable brain infarct volume independent of the patency of PcomAs.
-
Journal of neurotrauma · May 2012
Overlapping distribution of osteopontin and calcium in the ischemic core of rat brain after transient focal ischemia.
Osteopontin (OPN), an adhesive glycoprotein, has recently been proposed to act as an opsonin that facilitates phagocytosis of neuronal debris by macrophages in the ischemic brain. The present study was designed to elucidate the process whereby OPN binds to neuronal cell debris in a rat model of ischemic stroke. Significant co-localization of the OPN protein and calcium deposits in the ischemic core were observed by combining alizarin red staining and OPN immunohistochemistry. ⋯ Combining immunogold-silver EM and electron probe microanalysis further demonstrated that the OPN protein was localized at the periphery of cell debris or degenerating neurites, corresponding with locally higher concentrations of calcium and phosphorus, and that the relative magnitude of OPN accumulation was comparable to that of calcium and phosphorus. These data suggest that calcium precipitation provides a matrix for the binding of the OPN protein within the debris or degenerating neurites induced by ischemic injury. Therefore, OPN binding to calcium deposits may be involved in phagocytosis of such debris, and may participate in the regulation of ectopic calcification in the ischemic brain.