Journal of neurotrauma
-
Journal of neurotrauma · May 2013
Intravenous infusion of magnesium chloride improves epicenter blood flow during the acute stage of contusive spinal cord injury in rats.
Vasospasm, hemorrhage, and loss of microvessels at the site of contusive or compressive spinal cord injury lead to infarction and initiate secondary degeneration. Here, we used intravenous injection of endothelial-binding lectin followed by histology to show that the number of perfused microvessels at the injury site is decreased by 80-90% as early as 20 min following a moderate T9 contusion in adult female rats. Hemorrhage within the spinal cord also was maximal at 20 min, consistent with its vasoconstrictive actions in the central nervous system (CNS). ⋯ The magnesium treatment seemed safe as it did not increase hemorrhage, despite the improved parenchymal blood flow. However, the treatment did not reduce acute microvessel, motor neuron or oligodendrocyte loss, and when infused for 7 days did not affect functional recovery or spared epicenter white matter over a 4 week period. These data suggest that microvascular blood flow can be restored with a clinically relevant treatment following spinal cord injury.
-
Journal of neurotrauma · May 2013
Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury.
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. ⋯ This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome.
-
Journal of neurotrauma · May 2013
Characterization of a cervical spinal cord hemicontusion injury in mice using the infinite horizon impactor.
The majority of clinical spinal cord injuries (SCIs) are contusive and occur at the cervical level of the spinal cord. Most scientists and clinicians agree that the preclinical evaluation of novel candidate treatments should include testing in a cervical SCI contusion model. Because mice are increasingly used because of the availability of genetically engineered lines, we characterized a novel cervical hemicontusion injury in mice using the Infinite Horizon Spinal Cord Impactor (Precisions Systems & Instrumentation, Lexington, KY). ⋯ Added dwell time of 15 or 30 sec significantly worsened behavioral outcome, and mice demonstrated minimal ability of grasping, paw usage, and overground locomotion. Besides worsening of behavioral deficits, added dwell time also reduced residual white and gray matter at the epicenter and rostral-caudal to the injury, including on the contralateral side of the spinal cord. Taken together, we developed and characterized a new hemicontusion SCI model in mice that produces sufficient and sustained impairments in gross and skilled forelimb function and produced primarily unilateral functional deficits.
-
Journal of neurotrauma · May 2013
Exercise training after spinal cord injury selectively alters synaptic properties in neurons in adult mouse spinal cord.
Following spinal cord injury (SCI), anatomical changes such as axonal sprouting occur within weeks in the vicinity of the injury. Exercise training enhances axon sprouting; however, the exact mechanisms that mediate exercised-induced plasticity are unknown. We studied the effects of exercise training after SCI on the intrinsic and synaptic properties of spinal neurons in the immediate vicinity (<2 segments) of the SCI. ⋯ The properties of spontaneous excitatory synaptic currents (sEPSCs) did not differ in trained and untrained animals. In contrast, evoked excitatory synaptic currents recorded after dorsal column stimulation were markedly increased in trained animals (peak amplitude 78.9±17.5 vs. 42.2±6.8 pA; charge 1054±376 vs. 348±75 pA·ms). These data suggest that 3 weeks of treadmill exercise does not affect the intrinsic properties of spinal neurons after SCI; however, excitatory synaptic drive from dorsal column pathways, such as the corticospinal tract, is enhanced.
-
Journal of neurotrauma · May 2013
Design of poly(ethylene glycol)-functionalized hydrophilic carbon clusters for targeted therapy of cerebrovascular dysfunction in mild traumatic brain injury.
Traumatic brain injury (TBI) involves the elaboration of oxidative stress that causes cerebrovascular dysfunction, including impairment of autoregulation of cerebral blood flow. Currently, there is no clinically effective antioxidant treatment for these pathologies. Most currently available antioxidants act through mechanisms in which the antioxidant either transfers the radical or requires regeneration, both of which are impaired in the toxic post-TBI environment. ⋯ Here we report that PEG-HCCs possess innate antioxidant activity and can be rapidly targeted via an antibody to the P-selectin antigen in a model of injured cultured brain endothelial cells. One immediate application of this therapy is to vascular dysfunction that accompanies TBI and worsens outcome in the face of systemic hypotension. These in vitro results support the need for further investigation in animal models.