Journal of neurotrauma
-
Journal of neurotrauma · Oct 2015
Characterization of Subcellular Responses Induced by Exposure of Microbubbles to Astrocytes.
Blast traumatic brain injury (bTBI) has now been identified to associate with adverse health consequences among combat veterans. Post-traumatic stress disorder linked with explosive blasts, for example, may result from such brain injury. The fundamental questions about the nature, diagnosis, and long-term consequences of bTBI and causative relationship to post-traumatic stress disorder remain elusive, however. ⋯ Of the cells that survived the initial assault, several subcellular changes were monitored and determined using fluorescent microscopy, including cell viability, cytoskeletal reorganization, changes in focal adhesion, membrane permeability, and potential onset of apoptosis. While the astrocytes impacted by the shock wave only demonstrated essentially unaltered cellular behavior, the astrocytes exposed to microbubbles exhibited significantly different responses, including production of reactive oxygen species by collapse of microbubbles. In the present study, we characterized and report for the first time the altered biophysical and subcellular properties in astrocytes in response to exposure to the combination of shock waves and microbubbles.
-
Journal of neurotrauma · Oct 2015
Studying axonal outgrowth and regeneration of the corticospinal tract in organotypic slice cultures.
Studies of axonal outgrowth and regeneration after spinal cord injury are hampered by the complexity of the events involved. Here, we present a simple and improved in vitro approach to investigate outgrowth, regeneration of the corticospinal tract, and intrinsic parenchymal responses. ⋯ Our data show that: a) motor-cortical outgrowth is already detectable after 1 d in culture and is source specific; b) treatment with neurotrophin-3 and C3 transferase from Clostridium botulinum significantly enhances axonal outgrowth during the course of cultivation; c) outgrowing axons form synaptic connections, as demonstrated by immunohistochemistry and calcium imaging; and d) migrating cells of motor-cortical origin can be reliably identified without previous tracing and are mostly neural precursors that survive and mature in the spinal cord parenchyma. Thus, our model is suitable for screening for candidate substances that enhance outgrowth and regeneration of the corticospinal tract and for studying the role of endogenous neural precursors after lesion induction.
-
Journal of neurotrauma · Oct 2015
External validation and recalibration of risk prediction models for acute traumatic brain injury among critically ill adult patients in the United Kingdom.
This study validates risk prediction models for acute traumatic brain injury (TBI) in critical care units in the United Kingdom and recalibrates the models to this population. The Risk Adjustment In Neurocritical care (RAIN) Study was a prospective, observational cohort study in 67 adult critical care units. Adult patients admitted to critical care following acute TBI with a last pre-sedation Glasgow Coma Scale score of less than 15 were recruited. ⋯ Recalibration of the models resulted in small improvements in discrimination and excellent calibration for all models. The risk prediction models demonstrated sufficient statistical performance to support their use in research and audit but fell below the level required to guide individual patient decision-making. The published models for unfavorable outcome at six months had poor calibration in the UK critical care setting and the models recalibrated to this setting should be used in future research.
-
Journal of neurotrauma · Oct 2015
Sulfonylurea Receptor 1 in Humans with Post-Traumatic Brain Contusions.
Post-traumatic brain contusions (PTBCs) are traditionally considered primary injuries and can increase in size, generate perilesional edema, cause mass effect, induce neurological deterioration, and cause death. Most patients experience a progressive increase in pericontusional edema, and nearly half, an increase in the hemorrhagic component itself. The underlying molecular pathophysiology of contusion-induced brain edema and hemorrhagic progression remains poorly understood. ⋯ The temporal pattern depended on cell type: 1) In neurons, SUR1 increased within 48 h of injury and stabilized thereafter; 2) in ECs, there was no trend; 3) in glial cells and microglia/macrophages, a moderate increase was observed over time; and 4) in neutrophils, it decreased with time. Our results suggest that up-regulation of SUR1 in humans point to this channel as one of the important molecular players in the pathophysiology of PTBCs. Our findings reveal opportunities to act therapeutically on the mechanisms of growth of traumatic contusions and therefore reduce the number of patients with neurological deterioration and poor neurological outcomes.
-
Journal of neurotrauma · Oct 2015
MEG Slow-wave Detection in Patients with Mild Traumatic Brain Injury and Ongoing Symptoms Correlated with Long-Term Neuropsychological Outcome.
Mild traumatic brain injury (mTBI) is common in the United States, accounting for as many as 75-80% of all TBIs. It is recognized as a significant public health concern, but there are ongoing controversies regarding the etiology of persistent symptoms post-mTBI. This constellation of nonspecific symptoms is referred to as postconcussive syndrome (PCS). ⋯ In addition, significant correlations between slow-wave activity on MEG and patterns of cognitive functioning were found in cortical areas, consistent with cognitive impairments on exams. Results provide more objective evidence that there may be subtle changes to the neurobiological integrity of the brain that can be detected by MEG. Further, these findings suggest that these abnormalities are associated with cognitive outcomes and may account, at least in part, for long-term PCS in those who have sustained an mTBI.