Journal of neurotrauma
-
Journal of neurotrauma · Jul 2015
Neurologic Functional and Quality of Life Outcomes after TBI: Clinic Attendees Versus Non-Attendees.
This investigation describes the relationship between TBI patient demographics, quality of life outcome, and functional status outcome among clinic attendees and non-attendees. Of adult TBI survivors with intracranial hemorrhage, 63 attended our TBI clinic and 167 did not attend. All were telephone surveyed using the Extended-Glasgow Outcome Scale (GOSE), the Quality of Life after Brain Injury (QOLIBRI) scale, and a post-discharge therapy questionnaire. ⋯ In addition, survivors who received post-discharge rehabilitation had higher QOLIBRI scores by 11.4 points (95% CI: 3.7-19.1) than those who did not. Survivors with private insurance had QOLIBRI scores that were 25.5 points higher (95% CI: 11.3-39.7) than those with workers' compensation and 16.8 points higher (95% CI: 7.4-26.2) than those without insurance. Because neurologic injury severity, insurance status, and receipt of rehabilitation or therapy are independent risk factors for functional and quality of life outcomes, future directions will include improving earlier access to post-TBI rehabilitation, social work services, affordable insurance, and community resources.
-
Journal of neurotrauma · Jul 2015
Alterations in Hippocampal Network Activity after In Vitro Traumatic Brain Injury.
Traumatic brain injury (TBI) alters function and behavior, which can be characterized by changes in electrophysiological function in vitro. A common cognitive deficit after mild-to-moderate TBI is disruption of persistent working memory, of which the in vitro correlate is long-lasting, neuronal network synchronization that can be induced pharmacologically by the gamma-aminobutyric acid A antagonist, bicuculline. ⋯ A second challenge with bicuculline 24 h after the first challenge significantly decreased the normalized spontaneous event rate in the DG. In addition, we illustrate the utility of the SMEA for TBI research by combining multiple experimental paradigms in one platform, which has the potential to enable novel investigations into the mechanisms responsible for functional consequences of TBI and speed the rate of drug discovery.
-
Calcium dysfunction is involved in secondary traumatic brain injury (TBI). Manganese-enhanced MRI (MEMRI), in which the manganese ion acts as a calcium analog and a MRI contrast agent, was used to study rats subjected to a controlled cortical impact. Comparisons were made with conventional T2 MRI, sensorimotor behavior, and immunohistology. ⋯ We concluded that MEMRI detected early excitotoxic injury in the hyperacute phase, preceding vasogenic edema. In the subacute phase, MEMRI detected contrast consistent with tissue cavitation and reactive gliosis. MEMRI offers novel contrasts of biological processes that complement conventional MRI in TBI.
-
Journal of neurotrauma · Jul 2015
Identification of the vascular source of vasogenic brain edema following traumatic brain injury using in vivo 2-photon microscopy in mice.
Vasogenic brain edema due to vascular leakage is one of the most important factors determining the clinical outcome of patients following acute brain injury. To date, performing a detailed in vivo quantification of vascular leakage has not been possible. Here, we used in vivo 2-photon microscopy (2-PM) to determine the spatial (3D) and temporal development of vasogenic brain edema following traumatic brain injury (TBI) in mice; in addition, we identified the vessel types involved in vascular leakage. ⋯ Both arterioles and venules contributed similarly to brain edema formation and their contribution was independent of vessel size; however, capillaries were the major contributor to leakage. In summary, using 2-PM to perform in vivo 3D deep-brain imaging, we found that TBI induces vascular leakage from capillaries, venules, and arterioles. Thus, all three vessel types are involved in trauma-induced brain edema and should be considered when developing novel therapies for preventing vasogenic brain edema.
-
Journal of neurotrauma · Jul 2015
ReviewNear-Infrared Spectroscopy in the monitoring of adult traumatic brain injury: a review.
Cerebral near-infrared spectroscopy (NIRS) has long represented an exciting prospect for the noninvasive monitoring of cerebral tissue oxygenation and perfusion in the context of traumatic brain injury (TBI), although uncertainty still exists regarding the reliability of this technology specifically within this field. We have undertaken a review of the existing literature relating to the application of NIRS within TBI. We discuss current "state-of-the-art" NIRS monitoring, provide a brief background of the technology, and discuss the evidence regarding the ability of NIRS to substitute for established invasive monitoring in TBI.