Journal of neurotrauma
-
Journal of neurotrauma · Feb 2016
Intrathecal acetyl-l-carnitine protects tissue and improves function after a mild contusive spinal cord injury in rats.
Primary and secondary ischemia after spinal cord injury (SCI) contributes to tissue and axon degeneration, which may result from decreased energy substrate availability for cellular and axonal mitochondrial adenosine triphosphate (ATP) production. Therefore, providing spinal tissue with an alternative energy substrate during ischemia may be neuroprotective after SCI. To assess this, rats received a mild contusive SCI (120 kdyn, Infinite Horizons impactor) at thoracic level 9 (T9), which causes loss of ∼ 80% of the ascending sensory dorsal column axonal projections to the gracile nucleus. ⋯ Furthermore, grid walking, a task we have shown to be dependent on dorsal column function, was not improved. Thus, mitochondrial substrate replacement may only be efficacious in areas of lesser or temporary ischemia, such as the ventral spinal cord and injury penumbra in this study. The current data also support our previous evidence that microvessel loss is central to secondary tissue degeneration.
-
Journal of neurotrauma · Feb 2016
A New Acute Impact-Compression Lumbar Spinal Cord Injury Model in the Rodent.
Traumatic injury to the lumbar spinal cord results in complex central and peripheral nervous tissue damage causing significant neurobehavioral deficits and personal/social adversity. Although lumbar cord injuries are common in humans, there are few clinically relevant models of lumbar spinal cord injury (SCI). This article describes a novel lumbar SCI model in the rat. ⋯ Evaluation of sensory outcomes revealed highly pathological alterations including mechanical allodynia and thermal hyperalgesia indicated by increasing avoidance responses and decreasing latency in the tail-flick test. Deficits in spinal tracts were confirmed by electrophysiology showing increased latency and decreased amplitude of both sensory and motor evoked potentials (SEP/MEP), and increased plantar H-reflex indicating an increase in motor neuron excitability. This is a comprehensive lumbar SCI model and should be useful for evaluation of translationally oriented pre-clinical therapies.