Journal of neurotrauma
-
Journal of neurotrauma · Mar 2017
Multi-day recordings of wearable sensors are valid and sensitive measures of function and independence in human spinal cord injury.
Wearable sensor assessment tools have proven to be reliable in measuring function in normal and impaired movement disorders during well-defined assessment protocols. While such assessments can provide valid and sensitive measures of upper limb activity in spinal cord injury (SCI), no assessment tool has yet been introduced into unsupervised daily recordings to complement clinical assessments during rehabilitation. The objective of this study was to measure the overall amount of upper-limb activity in subjects with acute SCI using wearable sensors and relate this to lesion characteristics, independence, and function. ⋯ Compared with paraplegics, tetraplegics showed significantly lower activity counts and increased limb-use laterality. This is the first cross-sectional study showing the feasibility and clinical value of sensor recordings during unsupervised daily activities in rehabilitation. The strong relationship between sensor-based measures and clinical outcomes supports the application of such technology to assess and track changes in function during rehabilitation and in clinical trials.
-
Journal of neurotrauma · Mar 2017
High-intensity locomotor exercise increases brain-derived neurotrophic factor in individuals with incomplete spinal cord injury.
High-intensity locomotor exercise is suggested to contribute to improved recovery of locomotor function after neurological injury. This may be secondary to exercise-intensity-dependent increases in neurotrophin expression demonstrated previously in control subjects. However, rigorous examination of intensity-dependent changes in neurotrophin levels is lacking in individuals with motor incomplete spinal cord injury (SCI). ⋯ Significant correlations were observed between changes in BDNF and specific indicators of exercise intensity (e.g., rating of perceived exertion; R = 0.43; p = 0.02). Additionally, the data suggest that Val66Met SNP carriers may not exhibit intensity-dependent changes in serum BDNF concentration. Given the known role of BDNF in experience-dependent neuroplasticity, these preliminary results suggest that exercise intensity modulates serum BDNF concentrations and may be an important parameter of physical rehabilitation interventions after neurological injury.
-
Journal of neurotrauma · Mar 2017
NorBNI blocks the adverse effects of morphine following spinal cord injury.
Opioids are frequently used for the treatment of pain following spinal cord injury (SCI). Unfortunately, we have shown that morphine administered in the acute phase of SCI results in significant, adverse secondary consequences including compromised locomotor and sensory recovery. Similarly, we showed that selective activation of the κ-opioid receptor (KOR), even at a dose 32-fold lower than morphine, is sufficient to attenuate recovery of locomotor function. ⋯ This suggests that activation of the KOR system plays a significant role in the morphine-induced attenuation of recovery. Our research suggests that morphine, and other opioid analgesics, may be contraindicated for the SCI population. Blocking KOR activity may be a viable strategy for improving the safety of clinical opioid use.
-
Journal of neurotrauma · Mar 2017
Spinal cord injury suppresses cutaneous inflammation: implications for peripheral wound healing.
People who suffer a traumatic spinal cord injury (SCI) are at increased risk for developing dermatological complications. These conditions increase cost of care, incidence of rehospitalization, and the risk for developing other infections. The consequences of dermatological complications after SCI are likely exacerbated further by post-injury deficits in neural-immune signaling. ⋯ Radiant efficiency data were confirmed using magnetic resonance imaging (MRI), and together the data indicate that SCI significantly impairs subcutaneous inflammation. Future studies should determine whether enhancing local inflammation or boosting systemic immune function can improve the rate or efficiency of cutaneous wound healing in individuals with SCI. Doing so also could limit wound infections or secondary complications of impaired healing after SCI.
-
Journal of neurotrauma · Mar 2017
Pain Input Impairs Recovery After Spinal Cord Injury: Treatment With Lidocaine.
More than 90% of spinal cord injuries are caused by traumatic accidents and are often associated with other tissue damage (polytrauma) that can provide a source of continued pain input during recovery. In a clinically relevant spinal cord contusion injury model, prior work has shown that noxious stimulation at an intensity that engages pain (C) fibers soon after injury augments secondary injury and impairs functional recovery. Noxious input increases the expression of pro-inflammatory cytokines (interleukin 1β and 18), cellular signals associated with cell death (caspase 3 and 8), and physiological signs of hemorrhage. ⋯ Contused rats that received nociceptive stimulation soon after injury exhibited poor locomotor recovery, less weight gain, and greater tissue loss at the site of injury. Prophylactic application of lidocaine blocked the adverse effect of nociceptive stimulation on behavioral recovery and reduced tissue loss from secondary injury. The results suggest that quieting neural excitability using lidocaine can reduce the adverse effect of pain input (from polytrauma or surgery) after SCI.