Journal of neurotrauma
-
Journal of neurotrauma · May 2017
Interlimb coordination during tied-belt and transverse split-belt locomotion before and after an incomplete spinal cord injury.
Coordination between the arms/forelimbs and legs/hindlimbs is often impaired in humans and quadrupedal mammals after incomplete spinal cord injury. In quadrupeds, the forelimbs often take more steps than the hindlimbs, producing a two-to-one forelimb-hindlimb (2-1 FL-HL) coordination. In locomotor performance scales, this is generally considered a loss of FL-HL coordination. ⋯ In conclusion, the results suggest that neural communication persists after an incomplete spinal cord injury, despite an unequal number of steps between the forelimbs and hindlimbs, and that interlimb coordination can be modulated by having the forelimbs or hindlimbs move at a faster frequency. We propose that locomotor recovery scales incorporate more sensitive methods to quantify FL-HL coordination, to better reflect residual functional capacity and possible cervicolumbar neural communication. Lastly, devising training protocols that make use of the bidirectional influences of the cervical and lumbar locomotor pattern generators could strengthen interlimb coordination and promote locomotor recovery.
-
Journal of neurotrauma · May 2017
A single dose of docosahexaenoic acid increases the functional recovery promoted by rehabilitation following cervical spinal cord injury in the rat.
Task-specific rehabilitation has been shown to promote functional recovery after acute spinal cord injury (SCI). Recently, the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA), has been shown to promote neuroplasticity after SCI. Here, we investigated whether the combination of a single bolus of DHA with rehabilitation can enhance the effect of DHA or rehabilitation therapy in adult injured spinal cord. ⋯ We also observed that the greatest increase in the synaptic vesicle protein, synaptophysin, and the synaptic active zone protein, Bassoon, occurred in animals that received both DHA and rehabilitation. In summary, the functional, anatomical, and synaptic plasticity induced by task-specific rehabilitation can be further enhanced by DHA treatment. This study shows the potential beneficial effects of DHA combined with rehabilitation for the treatment of patients with SCI.