Journal of neurotrauma
-
Journal of neurotrauma · Apr 2018
Geriatric Traumatic Brain Injury: Epidemiology, Outcomes, Knowledge Gaps, and Future Directions.
This review of the literature on traumatic brain injury (TBI) in older adults focuses on incident TBI sustained in older adulthood ("geriatric TBI") rather than on the separate, but related, topic of older adults with a history of earlier-life TBI. We describe the epidemiology of geriatric TBI, the impact of comorbidities and pre-injury function on TBI risk and outcomes, diagnostic testing, management issues, outcomes, and critical directions for future research. The highest incidence of TBI-related emergency department visits, hospitalizations, and deaths occur in older adults. ⋯ Yet there are few geriatric-specific TBI guidelines to assist with complex management decisions, and TBI prognostic models do not perform optimally in this population. Major barriers in management of geriatric TBI include under-representation of older adults in TBI research, lack of systematic measurement of pre-injury health that may be a better predictor of outcome and response to treatment than age and TBI severity alone, and lack of geriatric-specific TBI common data elements (CDEs). This review highlights the urgent need to develop more age-inclusive TBI research protocols, geriatric TBI CDEs, geriatric TBI prognostic models, and evidence-based geriatric TBI consensus management guidelines aimed at improving short- and long-term outcomes for the large and growing geriatric TBI population.
-
Journal of neurotrauma · Apr 2018
A Scoping Review of Pain in Children after Traumatic Brain Injury: Is There More Than Headache?
Headache is a common source of pain in children after traumatic brain injury (TBI); however, relatively little is known about nonheadache pain in this pediatric population. The present review seeks to map the extant literature to determine the prevalence, characteristics, and impact of nonheadache pain in children post-TBI of all severities. We found that of 109 studies published on pain in children after a TBI, 95 (87%) were focused exclusively on headache pain and only 14 (13%) reported on nonheadache pain or overall pain, with half (n = 7) in the form of case studies. ⋯ Findings of the current review suggest that pain assessment in children post-TBI needs improvement, given that pain is linked to worse recovery, poorer quality of life, and can be long-lasting. More rigorous examination of nonheadache pain and its role in impeding recovery in children post-TBI is imperative and has the potential to improve the care and management of children with TBI. We conclude with recommendations for pain assessment, discuss gaps in the literature, and highlight directions for future research.
-
Journal of neurotrauma · Apr 2018
Minocycline plus N-Acetylcysteine Reduce Behavioral Deficits and Improve Histology with a Clinically Useful Time Window.
There are no drugs to manage traumatic brain injury (TBI) presently. A major problem in developing therapeutics is that drugs to manage TBI lack sufficient potency when dosed within a clinically relevant time window. Previous studies have shown that minocycline (MINO, 45 mg/kg) plus N-acetylcysteine (NAC, 150 mg/kg) synergistically improved cognition and memory, modulated inflammation, and prevented loss of oligodendrocytes that remyelinated damaged white matter when first dosed 1 h after controlled cortical impact (CCI) in rats. ⋯ These data suggest that MINO (22.5 mg/kg) plus NAC (75 mg/kg) remain potent when dosed at clinically useful time windows. Both MINO and NAC are drugs approved by the Food and Drug Administration and have been administered safely to patients in clinical trials at the doses in the new formulation. This suggests that the drug combination of MINO plus NAC may be effective in treating patients with TBI.
-
Journal of neurotrauma · Apr 2018
Traumatic Brain Injury Impairs Myogenic Constriction of Cerebral Arteries: Role of Mitochondria-Derived H2O2 and TRPV4-Dependent Activation of BKca Channels.
Traumatic brain injury (TBI) impairs autoregulation of cerebral blood flow, which contributes to the development of secondary brain injury, increasing mortality of patients. Impairment of pressure-induced myogenic constriction of cerebral arteries plays a critical role in autoregulatory dysfunction; however, the underlying cellular and molecular mechanisms are not well understood. To determine the role of mitochondria-derived H2O2 and large-conductance calcium-activated potassium channels (BKCa) in myogenic autoregulatory dysfunction, middle cerebral arteries (MCAs) were isolated from rats with severe weight drop-impact acceleration brain injury. ⋯ In cultured vascular smooth muscle cells H2O2 activated BKCa currents, which were inhibited by blockade of TRPV4 channels. Collectively, our results suggest that after TBI, excessive mitochondria-derived H2O2 activates BKCa channels via a TRPV4-dependent pathway in the vascular smooth muscle cells, which impairs pressure-induced constriction of cerebral arteries. Future studies should elucidate the therapeutic potential of pharmacological targeting of this pathway in TBI, to restore autoregulatory function in order to prevent secondary brain damage and decrease mortality.
-
Journal of neurotrauma · Apr 2018
The Influence of Traumatic Axonal Injury in Thalamus and Brainstem on Level of Consciousness at Scene or Admission: A Clinical Magnetic Resonance Imaging Study.
The aim of this study was to investigate how traumatic axonal injury (TAI) lesions in the thalamus, basal ganglia, and brainstem on clinical brain magnetic resonance imaging (MRI) are associated with level of consciousness in the acute phase in patients with moderate to severe traumatic brain injury (TBI). There were 158 patients with moderate to severe TBI (7-70 years) with early 1.5T MRI (median 7 days, range 0-35) without mass lesion included prospectively. Glasgow Coma Scale (GCS) scores were registered before intubation or at admission. ⋯ The TAI locations most associated with low GCS scores in univariable ordinal regression analyses were bilateral TAI lesions in the thalamus (odds ratio [OR] 35.8; confidence interval [CI: 10.5-121.8], p < 0.001), followed by bilateral lesions in basal ganglia (OR 13.1 [CI: 2.0-88.2], p = 0.008) and bilateral lesions in the brainstem (OR 11.4 [CI: 4.0-32.2], p < 0.001). This Trondheim TBI study showed that patients with bilateral TAI lesions in the thalamus, basal ganglia, or brainstem had particularly low consciousness at admission. We suggest these bilateral lesions should be evaluated further as possible biomarkers in a new TAI-MRI classification as a worst grade, because they could explain low consciousness in patients without mass lesions.