Journal of neurotrauma
-
Journal of neurotrauma · Apr 2019
Observational StudyElevations in MicroRNA Biomarkers in Serum Are Associated with Measures of Concussion, Neurocognitive Function and Subconcussive Trauma over a single NCAA Division I Season in Collegiate Football Players.
This prospective controlled observational cohort study assessed the performance of a novel panel of serum microRNA (miRNA) biomarkers on indicators of concussion, subconcussive impacts, and neurocognitive function in collegiate football players over the playing season. Male collegiate student football athletes participating in a Division I Football Bowl Subdivision of the National Collegiate Athletic Association (NCAA) were enrolled. There were a total of 53 participants included in the study, 30 non-athlete control subjects and 23 male collegiate student football athletes. ⋯ Those correlating with poor reaction times were miR-20a (0.043), miR-505* (p = 0.049), miR-30d (p = 0.031), miR-92 (p = 0.015), and miR-151-5p (p = 0.044). Select miRNAs were associated with baseline concussion assessments at the beginning of the season and with neurocognitive changes from pre to post-season in collegiate football players. Should these findings be replicated in a larger cohort of athletes, these markers could potentially serve as measures of neurocognitive status in athletes at risk for concussion and subconcussive injuries.
-
Journal of neurotrauma · Apr 2019
Acute post-traumatic sleep may define vulnerability to a second traumatic brain injury in mice.
Chronic neurological impairments can manifest from repetitive traumatic brain injury (rTBI), particularly when subsequent injuries occur before the initial injury completely heals. Herein, we apply post-traumatic sleep as a physiological biomarker of vulnerability, hypothesizing that a second TBI during post-traumatic sleep worsens neurological and histological outcomes compared to one TBI or a second TBI after post-traumatic sleep subsides. Mice received sham or diffuse TBI by midline fluid percussion injury; brain-injured mice received one TBI or rTBIs at 3- or 9-h intervals. ⋯ Orexin-A-positive cells were sustained in the lateral hypothalamus with no loss detected, indicating that loss of wake-promoting neurons did not contribute to post-traumatic sleep. Thus, duration of post-traumatic sleep is a period of vulnerability that results in exacerbated injury from rTBI. Monitoring individual post-traumatic sleep is a potential clinical tool for personalized TBI management, where regular sleep patterns may inform rehabilitative strategies and return-to-activity guidelines.
-
Journal of neurotrauma · Apr 2019
Acute Mitochondrial Impairment Underlies Prolonged Cellular Dysfunction after Repeated Mild Traumatic Brain Injuries.
Mild traumatic brain injuries (mTBI), accounting for more than 80% of TBIs, can cause cognitive and behavioral impairments, the severity and duration of which increase after additional mTBIs. While mTBI does not cause widespread neuronal death, the mechanisms underlying increased cellular susceptibility to subsequent head impacts remain unknown. To investigate the hypothesis that altered mitochondrial bioenergetics underlie cellular vulnerability to repeated insults, we employed a mouse model of mild closed head injury (CHI) to examine mitochondrial function and oxidative stress, because these mechanisms are often intertwined. ⋯ Markers of oxidative stress were significantly elevated after two CHIs delivered 48 h apart, but not after single CHI or two CHI delivered 96 h apart. This study establishes that mTBI results in early mitochondrial dysfunction, which may be a determinant for cellular vulnerability to repeated head impacts. Thus, therapies targeting mitochondrial impairment could improve outcomes after repeated mTBI.
-
Journal of neurotrauma · Apr 2019
Increased miR-21-3p in Injured Brain Microvascular Endothelial Cells after Traumatic Brain Injury Aggravates Blood-Brain Barrier Damage by Promoting Cellular Apoptosis and Inflammation through Targeting MAT2B.
Our recent articles have reported that increased miR-21-5p in brain after traumatic brain injury (TBI) could improve the neurological outcome through alleviating blood-brain barrier (BBB) damage. miR-21-3p is another mature miRNA derived from pre-miR-21 after Dicer Procession other than miR-21-5p. Its roles in various diseases, such as tumors and myocardial disease, aroused great interest for research in recent years. To further explore the function and underlying mechanism of miR-21, especially miR-21-3p, in regulating the pathological development of BBB damage after TBI, we designed this research and focused on studying the impact of miR-21-3p on apoptosis and inflammation in brain microvascular endothelial cells (BMVECs), the major cellular component of BBB. ⋯ It reduced Evans Blue extravasation and promoted the expression of tight junction proteins, thus contributed to improve the neurological outcome of CCI mice. Taken together, increased miR-21-3p in BMVECs after TBI was bad for restoration of injured BBB. Downregulation on the miR-21-3p level in injured brain could be a promising therapeutic strategy for BBB damage after TBI.
-
Journal of neurotrauma · Apr 2019
Meta Analysis Comparative StudyComparing Region of Interest vs. Voxel-Wise Diffusion Tensor Imaging Analytic Methods in Mild and Moderate Traumatic Brain Injury: A Systematic Review and Meta-Analysis.
Diffusion tensor imaging is a magnetic resonance imaging technique that is uniquely capable of detecting microstructural tissue damage in mild and moderate traumatic brain injuries (TBIs). To date, it remains unknown if two common analytic techniques, region of interest (ROI) versus voxel-wise (VW) analyses, detect injury in similar locations. The purpose of this systematic review and meta-analysis was to directly compare the regions of abnormality elucidated by each method. ⋯ Moreover, we have shown that the magnitude of damage in the corpus callosum revealed by ROI analysis (z = -3.15) is greater than that demonstrated by VW analysis (z = -1.41). Overall, this study indicates that both ROI and VW analytic methods are sensitive to low FA in the corpus callosum; however, the ROI method has more power to detect the full extent of tissue abnormality in the corpus callosum. More research utilizing standardized methods and reporting is essential to fully characterize the extent to which ROI and VW analyses can concordantly detect other locations of pathology in mild and moderate TBI patients.