Journal of neurotrauma
-
Journal of neurotrauma · Apr 2019
Meta AnalysisVentricular Drainage Catheters versus Intracranial Parenchymal Catheters for Intracranial Pressure Monitoring-Based Management of Traumatic Brain Injury: A Systematic Review and Meta-Analysis.
Intracranial pressure (ICP) monitoring is one of the mainstays in the treatment of severe traumatic brain injury (TBI), but different approaches to monitoring exist. The aim of this systematic review and meta-analysis is to compare the effectiveness and complication rate of ventricular drainage (VD) versus intracranial parenchymal (IP) catheters to monitor and treat raised ICP in patients with TBI. Pubmed, Embase, Web of Science, Google Scholar, and the Cochrane Database were searched for articles comparing ICP monitoring-based management with VDs and monitoring with IP monitors through March 2018. ⋯ VDs caused more complications, particularly more infections, but there was no difference in mortality or functional outcome between the two monitoring modalities. However, the studies had a high risk of bias. A need exists for high quality comparisons of VDs versus IP monitor-based management strategies on patient outcomes.
-
Journal of neurotrauma · Apr 2019
ReviewNeuronal Enriched Extracellular Vesicle Proteins as Biomarkers for Traumatic Brain Injury.
Traumatic brain injury (TBI) is a major cause of injury-related death throughout the world and lacks effective treatment. Surviving TBI patients often develop neuropsychiatric symptoms, and the molecular mechanisms underlying the neuronal damage and recovery following TBI are not well understood. Extracellular vesicles (EVs) are membranous nanoparticles that are divided into exosomes (originating in the endosomal/multi-vesicular body [MVB] system) and microvesicles (larger EVs produced through budding of the plasma membrane). ⋯ EVs enriched for neuronal origin can be harvested from peripheral blood samples and their contents quantitatively examined as a window to follow potential changes occurring in brain. Recent studies suggest that the levels of exosomal proteins and microRNAs (miRNAs) may represent novel biomarkers to support the clinical diagnosis and potential response to treatment for neurological disorders. In this review, we focus on the biogenesis of EVs, their molecular composition, and recent advances in research of their contents as potential diagnostic tools for TBI.
-
Journal of neurotrauma · Apr 2019
Comparative Effectiveness of Surgery for Traumatic Acute Subdural Hematoma in an Aging Population.
There is uncertainty as to the optimal initial management of patients with traumatic acute subdural hematoma, leading to regional variation in surgical policy. This can be exploited to compare the effect of various management strategies and determine best practices. This article reports such a comparative effectiveness analysis of a retrospective observational cohort of traumatic acute subdural hematoma patients in two geographically distinct neurosurgical departments chosen for their - a-priori defined - diverging treatment preferences. ⋯ Mortality was lower in region A (37% vs. 45%, p = 0.29), as was unfavorable outcome (53% vs. 62%, p = 0.23). The strategy favoring surgical evacuation was associated with significantly lower odds of mortality (odds ratio [OR]: 0.43; 95% confidence interval [CI]: 0.21-0.88) and unfavorable outcome (OR: 0.53; 95% CI: 0.27-1.02) 3-9 months post-injury. Therefore, in the aging population of patients with acute subdural hematoma, a treatment strategy favoring emergency hematoma evacuation might be associated with lower odds of mortality and unfavorable outcome.
-
Journal of neurotrauma · Apr 2019
High Resolution Computed Tomography Atlas of the Porcine Temporal Bone and Skull Base: Anatomical Correlates for Traumatic Brain Injury Research.
Brain injuries are a significant cause of morbidity and mortality worldwide. Auditory and vestibular dysfunction may occur following trauma to the temporal bone (TB), including the lateral skull base. The porcine model is a commonly used large animal model for investigating brain injury. ⋯ Although some variability exists, the ossicular chain, vestibule, cochlea, course of the facial nerve, and skull base are similar to those of humans. Major differences included position of the external auditory canal and mastoid, as well as presence of the petrous carotid canal. Study findings may serve as an atlas to evaluate the porcine middle and inner ear, as well as lateral skull base injuries for future porcine brain injury models or other studies that require CT-based analysis.
-
Journal of neurotrauma · Apr 2019
Central versus Local Radiological Reading of Acute Computed Tomography Characteristics in Multi-Center Traumatic Brain Injury Research.
Observer variability in local radiological reading is a major concern in large-scale multi-center traumatic brain injury (TBI) studies. A central review process has been advocated to minimize this variability. The aim of this study is to compare central with local reading of TBI imaging datasets and to investigate the added value of central review. ⋯ Central reviewers showed substantial to excellent interobserver and intra-observer agreement (κ = 0.73 to κ = 0.96), contrasted by considerable variability in local radiological reading. Compared with local evaluation, a central review process offers a more consistent radiological reading of acute CT characteristics in TBI. It generates reliable, reproducible data and should be recommended for use in multi-center TBI studies.